Skip to main content

Advertisement

Log in

Continuous hysteresis model using Duffing-like equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many material and mechanical systems, such as magnetorheological (MR) dampers used for reducing vibration in engineering systems, have long-standing modeling and control problems because of their nonlinear hysteresis behavior. Existing hysteresis models, including discontinuous and piecewise-continuous functions, are nonideal for numerical computation, stability analysis, and control design. This study links the hysteresis characteristics of a Duffing-like equation and an input–output system through a very subtle observation. Thus, the hysteresis dynamics are approximated using a traceable, second-order nonlinear ordinary differential equation with an inertial element. In addition, the hysteresis stability associated with energy dissipation can be analyzed using the Lyapunov method in a more deterministic and systematic manner than has previously been possible. Experimental work and hysteresis identification of a realistic MR damper device are presented to illustrate the proposed Duffing-like modeling techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spencer, B.F., Jr., Dyke, S.J., Sain, M.K., Carlson, J.D.: Phenomenological model for magnetorheological dampers. J. Eng. Mech. 123(3), 230–238 (1997). doi:10.1061/(asce)0733-9399(1997)123:3(230)

  2. Wang, D.H., Liao, W.H.: Magnetorheological fluid dampers: a review of parametric modelling. Smart Mater. Struct. 20(2), 023001 (2011)

    Article  Google Scholar 

  3. Dimock, G.A., Lindler, J.E., Wereley, N.M.: Bingham biplastic analysis of shear thinning and thickening in magnetorheological dampers. Proceedings of SPIE 3985, Smart Structures and Materials 2000: Smart Structures and Integrated Systems, 444. (2000)

  4. Wereley, N.M., Pang, L., Kamath, G.M.: Idealized hysteresis modeling of electrorheological and magnetorheological dampers. J. Intell. Mater. Syst. Struct. 9(8), 642–649 (1998). doi:10.1177/1045389x9800900810

    Article  Google Scholar 

  5. Nakashima, M.: Development, potential, and limitations of real-time online (pseudo-dynamic) testing. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 359(1786), 1851–1867 (2001). doi:10.1098/rsta.2001.0876

    Article  Google Scholar 

  6. Dyke, S.J., Spencer, B.F., Sain, M.K., Carlson, J.D.: Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct. 5(5), 565–575 (1996). doi:10.1088/0964-1726/5/5/006

    Article  Google Scholar 

  7. Ikhouane, F., Rodellar, J.: Systems with Hysteresis Analysis, Identification and Control Using the Bouc-Wen Model. John Wiley and Sons, Chichester (2007)

    MATH  Google Scholar 

  8. Caterino, N., Spizzuoco, M., Occhiuzzi, A.: Understanding and modelling the physical behaviour of magnetorheological dampers for seismic structural control. Smart Mater. Struct. 20(6), 065013 (2011)

    Article  Google Scholar 

  9. Yang, G., Spencer, B., Jung, H., Carlson, J.: Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications. J. Eng. Mech. 130(9), 1107–1114 (2004). doi:10.1061/(ASCE)0733-9399(2004)130:9(1107)

    Article  Google Scholar 

  10. Tusset, A., Balthazar, J.: On the chaotic suppression of both ideal and non-ideal duffing based vibrating systems, using a magnetorheological damper. Differ. Equ. Dyn. Syst. 21(1–2), 105–121 (2013). doi:10.1007/s12591-012-0128-4

    Article  MATH  MathSciNet  Google Scholar 

  11. Ikhouane, F., Rodellar, J.: On the hysteretic Bouc-Wen model. Nonlinear Dyn. 42(1), 63–78 (2005). doi:10.1007/s11071-005-0069-3

    Article  MATH  MathSciNet  Google Scholar 

  12. Cetin, S., Zergeroglu, E., Sivrioglu, S., Yuksek, I.: A new semiactive nonlinear adaptive controller for structures using MR damper: Design and experimental validation. Nonlinear Dyn. 66(4), 731–743 (2011). doi:10.1007/s11071-011-9946-0

    Article  MathSciNet  Google Scholar 

  13. Sims, N.D., Holmes, N.J., Stanway, R.: A unified modelling and model updating procedure for electrorheological and magnetorheological vibration dampers. Smart Mater. Struct. 13(1), 100 (2004)

  14. Jiang, Z., Christenson, R.E.: A fully dynamic magneto-rheological fluid damper model. Smart Mater. Struct. 21(6), 065002 (2012)

  15. Visintin, A.: Differential Models of Hysteresis. Springer, Berlin (1994)

  16. Duffing, G.: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre Technische Bedeutung. R, Vieweg & Sohn, (1918)

  17. Korsch, H.J., Jodl, H.-J., Hartmann, T.: Chaos: A Program Collection for the PC. Springer, Berlin (2008)

  18. Hu, H., Dowell, E., Virgin, L.: Resonances of a harmonically forced Duffing oscillator with time delay state feedback. Nonlinear Dyn. 15(4), 311–327 (1998). doi:10.1023/A:1008278526811

    Article  MATH  Google Scholar 

  19. Kovacic, I., Rand, R.: About a class of nonlinear oscillators with amplitude-independent frequency. Nonlinear Dyn. 74(1–2), 455–465 (2013). doi:10.1007/s11071-013-0982-9

    Article  MATH  MathSciNet  Google Scholar 

  20. Moon, F.C., Holmes, P.J.: A magnetoelastic strange attractor. J. Sound Vib. 65(2), 275–296 (1979). doi:10.1016/0022-460X(79)90520-0

    Article  MATH  Google Scholar 

  21. Pandey, M., Rand, R., Zehnder, A.: Frequency locking in a forced Mathieu-van der Pol-Duffing system. Nonlinear Dyn. 54(1–2), 3–12 (2008). doi:10.1007/s11071-007-9238-x

    Article  MATH  MathSciNet  Google Scholar 

  22. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Pearson Education, Taiwan (2005)

  23. Tu, J.-Y., Chen, T.-C., Lin, P.-Y.: Using Duffing equation to model magnetorheological damper dynamics. In: The 6th world conference on structural control and monitoring, Barcelona, Spain, 15–17 July (2014)

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Taiwan Ministry of Science and Technology, under grant 102-2625-M-007-001- ‘Development and Application of Model-Reference Semi-Active Control Methods for Magnetorheological Damper’, and National Center for Research on Earthquake Engineering, for the support in the pursuance of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Ying Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, JY., Lin, PY. & Cheng, TY. Continuous hysteresis model using Duffing-like equation. Nonlinear Dyn 80, 1039–1049 (2015). https://doi.org/10.1007/s11071-015-1926-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1926-3

Keywords

Navigation