Skip to main content
Log in

Dynamical bifurcation and synchronization of two nonlinearly coupled fluid-conveying pipes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The coupling effects of fluid-conveying pipe bundle are important issues due to the interactions between the pipes by connecting structures and/or flow environment. However, the researches on the dynamical synchronization of coupled pipes are still insufficient. This paper focuses on the synchronization phenomenon of two equivalent fluid-conveying pipes coupled by a nonlinear spring. The system equations were discretized by applying Galerkin expansion method, and numerical solutions were obtained for two-pipe system with simply supported conditions. The results indicated that the two-pipe system existed several different synchronization patterns including perfect, imperfect, lag, strange synchronization and failed pattern. The results also revealed that the system dynamic behavior is sensitive to flow or structure parameters of the individual pipe. By means of selecting the coupling spring parameters or designing proper structure configurations, the two pipes can be synchronized to similar dynamical states and vibration behaviors, which might be much simpler than that of the individual pipe. Thus, this finding provides theoretically a possible, even effective way to control the two-pipe vibrations and to achieve target dynamics simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Païdoussis, M.P., Li, G.X.: Pipes conveying fluid: a model dynamical problem. J. Fluids Struct. 7, 137–204 (1993)

    Article  Google Scholar 

  2. Païdoussis, M.P.: The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across applied mechanics. J. Sound Vib. 310, 462–492 (2008)

    Article  Google Scholar 

  3. Ibrahim, R.A.: Overview of mechanics of pipes conveying fluids—part I: fundamental studies. J. Press. Vessel Technol. 132(3), 034001 (2010)

  4. Ibrahim, R.A.: Overview of mechanics of pipes conveying fluids—part II: applications and fluidelastic problems. J. Press. Vessel Technol. 133, 024001 (2011)

    Article  Google Scholar 

  5. Païdoussis, M.P.: Fluid–structure interactions: slender structures and axial flow, vol. 1. Academic Press, London (1998)

    Google Scholar 

  6. Païdoussis, M.P.: Fluid–structure interactions: slender structures and axial flow, vol. 2. Academic Press, London (2004)

    Google Scholar 

  7. Païdoussis, M.P., Stuart, J.P., de Langre, E.: Fluid–structure interactions: cross-flow-induced instabilities. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  8. Païdoussis, M.P., Issid, N.T.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33(3), 267–294 (1974)

    Article  Google Scholar 

  9. Holmes, P.J.: Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis. J. Sound Vib. 53, 471–503 (1977)

    Article  MATH  Google Scholar 

  10. Païdoussis, M.P., Sundararajan, C.: Parametric and combination resonances of a pipe conveying pulsating fluid. J. Appl. Mech. 42, 780–784 (1975)

    Article  MATH  Google Scholar 

  11. Yoshizawa, M., Nao, H., Hasegawa, E., Tsujioka, Y.: Later vibration of a flexible pipe conveying fluid with pulsating flow. Bull. JSME 29, 2243–2250 (1986)

    Article  Google Scholar 

  12. Bajaj, A.K.: Nonlinear dynamics of tubes carrying a pulsatile flow. Dyn. Stab. Syst. 2, 19–41 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Namchchivaya, N.S.: Non-linear dynamics of supported pipe conveying pulsating fluid—I subharmonic resonance. Int. J. Non-Linear Mech. 24(3), 185–196 (1989)

    Article  MATH  Google Scholar 

  14. Namchchivaya, N.S., Tien, W.M.: Non-linear dynamics of supported pipe conveying pulsating fluid-II combination resonance. Int. J. Non-Linear Mech. 24(3), 197–208 (1989)

    Article  MATH  Google Scholar 

  15. Semler, C., Païdoussis, M.P.: Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. J. Fluids Struct. 10, 787–825 (1996)

    Article  Google Scholar 

  16. Jayaraman, K., Narayanan, S.: Chaotic oscillations in pipes conveying pulsating fluid. Nonlinear Dyn. 10, 333–357 (1996)

    Article  Google Scholar 

  17. Öz, H.R., Boyaci, H.: Transverse vibrations of tensioned pipes conveying fluid with time-depend velocity. J. Sound Vib. 236(2), 259–276 (2000)

  18. Jin, J.D., Song, Z.Y.: Parametric resonances of supported pipes conveying pulsating fluid. J. Fluids Struct. 20, 763–783 (2005)

    Article  Google Scholar 

  19. Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dyn. 49, 9–30 (2007)

    Article  MATH  Google Scholar 

  20. Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances. J. Sound Vib. 309, 375–406 (2008)

    Article  Google Scholar 

  21. Zhang, Y.L., Chen, L.Q.: Internal resonance of pipes conveying fluid in the supercritical regime. Nonlinear Dyn. 67, 1505–1514 (2012)

    Article  MATH  Google Scholar 

  22. Wang, L.: A further study on the nonlinear dynamics of simply supported pipes conveying pulsating fluid. Int. J. Non-Linear Mech. 44, 115–121 (2009)

    Article  Google Scholar 

  23. Jin, J.D.: Stability and chaotic motions of a restrained pipe conveying fluid. J. Sound Vib. 208(3), 427–439 (1997)

    Article  Google Scholar 

  24. Jin, J.D., Zou, G.S.: Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid. J. Sound Vib. 260, 783–805 (2003)

  25. Wang, L., Ni, Q.: A note on the stability and chaotic motions of a restrained pipe conveying pipe. J. Sound Vib. 296, 1079–1083 (2006)

    Article  Google Scholar 

  26. Steindl, A., Troger, H.: Nonlinear three-dimensional oscillations of elastically constrained fluid conveying viscoelastic tubes with perfect and broken O(2)-symmetry. Nonlinear Dyn. 7, 165–193 (1995)

    Article  MathSciNet  Google Scholar 

  27. Ghayesh, M.H., Païdoussis, M.P., Modarres-Sadeghi, Y.: Three-dimensional dynamics of a fluid-conveying cantilevered pipw fitted with an additional spring-support and an end-mass. J. Sound Vib. 330, 2869–2899 (2011)

    Article  Google Scholar 

  28. Dutta, S.C., Roy, R.: A critical review on idealization and modeling for interaction among soil-foundation-structure system. Comput. Struct. 80, 1579–1594 (2002)

    Article  Google Scholar 

  29. Doaré, O., de Langre, E.: Local and global instability of fluid-conveying pipes on elastic foundations. J. Fluids Struct. 16(1), 1–14 (2002)

    Article  Google Scholar 

  30. Vassilev, V.M., Djondjorov, P.A.: Dynamic stability of viscoelastic pipes on elastic foundations of variable modulus. J. Sound Vib. 297, 414–419 (2006)

    Article  Google Scholar 

  31. Chellapilla, K.R., Simha, H.S.: Critical velocity of fluid-conveying pipes resting on two-parameter foundation. J. Sound Vib. 302, 387–397 (2007)

    Article  Google Scholar 

  32. Doaré, O.: Dissipation effect on local and global stability of fluid-conveying pipes. J. Sound Vib. 329, 72–83 (2010)

    Article  Google Scholar 

  33. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196 (1997)

    Article  Google Scholar 

  35. Modarres-Sadeghi, Y., Païdoussis, M.P.: Nonlinear dynamics of extensible fluid-conveying pipes, supported atbothends. J. Fluids Struct. 25, 535–543 (2009)

  36. Taherion, S., Lai, Y.C.: Observability of lag synchronization of coupled chaotic oscillators. Phys. Rev. E 60, R6247 (1999)

  37. Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69, 32–47 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  38. Afraimovich, V.S., Verichev, N.N., Rabinovich, M.I.: Stochastic synchronization of oscillation in dissipative systems. Radiophys Quantum Electron 29(9), 795–803 (1986)

  39. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980 (1995)

    Article  Google Scholar 

  41. Kocarev, L., Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76, 1816 (1996)

    Article  Google Scholar 

  42. Zaks, M.A., Park, E.-H., Rosenblum, M.G., Kurths, J.: Alternating locking ratios in imperfect phase synchronization. Phys. Rev. Lett. 82, 4228 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujin Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, L., Hu, Y., Wang, X. et al. Dynamical bifurcation and synchronization of two nonlinearly coupled fluid-conveying pipes. Nonlinear Dyn 79, 2715–2734 (2015). https://doi.org/10.1007/s11071-014-1842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1842-y

Keywords

Navigation