Skip to main content
Log in

Non-standard Lagrangians in rotational dynamics and the modified Navier–Stokes equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We report some of the implications of non-standard Lagrangians in rotational dynamics. After deriving a new form of the Euler–Lagrange equation from the variational principle for the case of a particle moving in a non-inertial frame and subject to a velocity constraint, we deduce the modified Coriolis force, the modified centrifugal force and the modified transverse force. We then discuss the modified equation of motion relative to Earth, the free-fall problem and the Foucault pendulum issue. We show that the modified dynamics results on a modified Navier–Stokes equation where some features were raised and discussed accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    Book  MATH  Google Scholar 

  2. Carinena, J.G., Ranada, M.F., Santander, M.: Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703–062721 (2005)

    Article  MathSciNet  Google Scholar 

  3. Chandrasekar, V.K., Pandey, S.N., Senthilvelan, M., Lakshmanan, M.: Simple and unified approach to identify integrable nonlinear oscillators and systems. J. Math. Phys. 47, 023508–023545 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator. Phys. Rev. E72, 066203–066211 (2005)

    Google Scholar 

  5. Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Math. Theor. 41, 055205–055222 (2008)

    Article  MathSciNet  Google Scholar 

  6. Musielak, Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 42, 2645–2652 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cieslinski, J.I., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A Math. Theor. 43, 175205–175220 (2010)

    Article  MathSciNet  Google Scholar 

  8. El-Nabulsi, R.A.: Non-standard fractional Lagrangians. Nonlinear Dyn. 74, 381–394 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. El-Nabulsi, R.A.: Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent. Comput. Appl. Math. 33, 163–179 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. El-Nabulsi, R.A.: Nonlinear dynamics with non-standard Lagrangians. Qual. Theory Dyn. Syst. 13, 273–291 (2013)

  11. El-Nabulsi, R.A.: Non-standard non-local-in-time Lagrangian in classical mechanics. Qual. Theory Dyn. Syst. 13, 149–160 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. El-Nabulsi, R.A., Soulati, T., Rezazadeh, H.: Non-standard complex Lagrangian dynamics. J. Adv. Res. Dyn. Contr. Theor. 5(1), 50–62 (2012)

    MathSciNet  Google Scholar 

  13. El-Nabulsi, R.A.: Electrodynamics of relativistic particles through non-standard Lagrangian. J. At. Mol. Sci. 5, 268–278 (2014)

    Google Scholar 

  14. El-Nabulsi, R.A.: Non-standard Lagrangians cosmology. J. Theor. Appl. Phys. 7, 58 (2013)

    Article  Google Scholar 

  15. El-Nabulsi, R.A.: Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional. Indian J. Phys. 87(5), 465–470 (2013). Erratum Indian J. Phys. 87(10), 1059 (2013)

  16. El-Nabulsi, R.A.: Quantum field theory from an exponential action functional. Indian J. Phys. 87(4), 379–383 (2013)

    Article  MathSciNet  Google Scholar 

  17. El-Nabulsi, R.A.: Nonstandard fractional exponential Lagrangians, fractional geodesic equation, complex general relativity, and discrete gravity. Can. J. Phys. 91(8), 618–622 (2013)

    Article  Google Scholar 

  18. Hadjidemetriou, J.D., Voyatzis, G.: On the dynamics of extrasolar planetary systems under dissipation: migration of planets. Celest. Mech. Dyn. Astron. 107, 3–19 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Di Ruzza, S.: Some results on the dynamics of conservative and dissipative systems with applications to Celestial Mechanics. Facolta di Scienze Matematiche Fisiche e Naturali, Dottorato di Ricerca in Matematica-XXII Ciclo, Anno Accademico 2009–2010. Universita de Roma

  20. El-Zant, A.: Dissipative motion in galaxies with non-axisymmetric potentials. Phys. Rep. 311, 279–294 (1999)

    Article  Google Scholar 

  21. Kim, A.S.: Dissipative hydrodynamics of rigid spherical particles. Chem. Lett. 41, 1128–1130 (2012)

    Article  Google Scholar 

  22. Sidery, T., Andersson, N., Comer, G.L.: Waves and instabilities in dissipative rotating superfluid neutron stars. Mon. Not. R. Astron. Soc. 385, 335–348 (2008)

    Article  Google Scholar 

  23. Allison, A., Pearce, C.E.M., Abbott, D.: A variational approach to the analysis of dissipative electromechanical systems. PLoS One 9(2), e77190 (2014)

    Article  Google Scholar 

  24. Tabarrok, B., Leech, C.M.: Hamiltonian mechanics for functionals involving second-order derivatives. J. Appl. Mech. 69(6), 749–754 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Crampin, M., Mestdag, T., Sarlet, W.: On the generalized Helmholtz conditions for Lagrangian systems with dissipative forces. Z. Angew. Math. Mech. 90, 502–508 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mestdag, T., Sarlet, W., Crampin, M.: Second-order dynamical systems of Lagrangian type with dissipation. Differ. Geom. Appl. 29, S156–S163 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Brizard, A.J.: Introduction to Lagrangian and Hamiltonian mechanics. Department of Chemistry and Physics Saint Michael’s College, Colchester, VT 05439, July 14 (2004)

  28. Ram, S.T., Balan, N., Veenadhari, B., Gurubaran, S., Ravindran, S., Tsugawa, T., Liu, H., Niranjan, K., Nagatsuma, T.: First observational evidence for opposite zonal electric fields in equatorial E and F region altitudes during a geomagnetic storm period. J. Geophys. Res. Space Phys. 117(A9), 1–7 (2012)

  29. Rastogi, R.G., Sc, F.A.: On the simultaneous existence of eastward and westward flowing equatorial electrojet currents. Proc. Indian Acad. Sci. 81A, 80–92 (1975)

    Google Scholar 

  30. Foucault, J.B.L.: Demonstration physique du mouvement de rotation de la Terre au moyen du pendule. C. R. Acad. Sci. 32, 135–138 (1851)

    Google Scholar 

  31. Foucault, J.B.L.: Recueil des travaux scientifiques de Leon Foucault. Gauthier-Villars, Paris (1878)

    Google Scholar 

  32. Houde, M.: Classical Mechanics I, course given at Western University (2013)

  33. Jannussis, A., Skuras, E.: Harmonic oscillator with complex frequency. Nuovo Cimento B94, 1971–1996 (1986)

    MathSciNet  Google Scholar 

  34. Veljanoski, B., Jannussis, A.: Damped harmonic oscillator with complex coefficient of friction. Hadronic J. 10, 193–197 (1987)

    MATH  MathSciNet  Google Scholar 

  35. Baskoutas, S., Jannussis, A., Mignani, R.: Time evolution of Caldirola-Kanai oscillators. Nuovo Cimento B108, 953–966 (1993)

    Article  MathSciNet  Google Scholar 

  36. Mostafazadeh, A.: Inverting time-dependent harmonic oscillator potential by a unitary transformation and a new class of exactly solvable oscillators. Phys. Rev. A55, 4084–4088 (1997)

    Article  Google Scholar 

  37. Linck, R.A.: Foucault’s pendulum, a classical analogue for the electron spin state. PhD thesis, San Jose State University, Department of Physics and Astronomy, August (2013)

  38. Krivorichenko, M.I.: Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two faces of one coin. Phys. Usp. 52, 821–829 (2009). Usp. Fiz. Nauk 179, 873–882 (2009)

  39. Barenboim, G., Oteo, J.A.: One pendulum to run them all. Eur. J. Phys. 34, 1049–1065 (2013)

    Article  MATH  Google Scholar 

  40. Cushman-Roisin, B., Beckers, J.-M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Waltham (2010)

    Google Scholar 

  41. Choboter, P.F., Samelson, R.M., Allen, J.S.: A new solution of a nonlinear model of upwelling. J. Phys Oceanogr. 35, 532–544 (2005)

    Article  Google Scholar 

  42. McWilliams, J.C.: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, Cambridge (2006)

  43. Vandenbrouck, F., Berthier, L., Gheusi, F.: Coriolis force in geophysics: an elementary introduction and examples. Eur. J. Phys. 21, 359–366 (2000)

    Article  MATH  Google Scholar 

  44. Sulaiman, A., Handoko, L.T.: Lagrangian dynamics of the Navier-Stokes equation. In: Proceeding of the ICAM 2005. Report Number: FISIKALIPI-05009. arXiv:physics/ 0508092

  45. Smith, R.K.: Introductory Lectures on Fluid Dynamics. Monash University, Australia (2008)

    Google Scholar 

  46. Condon, E.U.: The physical pendulum in quantum mechanics. Phys. Rev. 31, 891–894 (1928)

    Article  MATH  Google Scholar 

  47. Leibscher, M., Schmidt, B.: Quantum dynamics of a plane pendulum. Phys. Rev. A80, 012510–012524 (2009)

    Article  Google Scholar 

  48. Cortet, P.Ph.: A liquid Foucault pendulum. Live from the Labs, No. 27, Quarterly, October 2012 (FAST Lab. UPMC and Univ, Paris-Sud)

  49. El-Nabulsi, R.A.: Modified plasma-fluid equations from non-standard Lagrangians with applications to nuclear fusion. Can. J. Phys. doi:10.1139/cjp-2014-0233

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Non-standard Lagrangians in rotational dynamics and the modified Navier–Stokes equation. Nonlinear Dyn 79, 2055–2068 (2015). https://doi.org/10.1007/s11071-014-1794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1794-2

Keywords

Navigation