Skip to main content
Log in

Nonlinear vibration suppression of flexible structures using nonlinear modified positive position feedback approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces Nonlinear Modified Positive Position Feedback (NMPPF) control approach for nonlinear vibration suppression at primary resonance. Nonlinearity in the system is due to large deformations caused by high-amplitude disturbances, while this control approach is applicable to all types of nonlinearities in resonant structures. NMPPF controller consists of a resonant second-order nonlinear compensator, which is enhanced by a lossy integrating compensator. The two compensators create a combination of exponential and periodic control inputs, which needs innovative time scaling for using the Method of Multiple Scales to obtain the analytical solution of the closed-loop system. The results of the analytical solution for the closed-loop NMPPF controller are presented and compared with the result of the conventional PPF controller. Effects of the control parameters on the system response are comprehensively studied by parameter variations. The approximate solution is then verified using numerical simulations. According to the results, the NMPPF controller provides a higher level of suppression in the overall frequency domain, as the peak amplitude at the neighborhood frequencies of the primary mode is reduced by 44 %, compared to the PPF method. The tunable control parameters also give more flexibility to create the expected type of system response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Marinca, V., Herisanu, N.: Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches. Springer, New York (2012)

    Google Scholar 

  2. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations, p. c1979. Wiley, New York (1979)

    MATH  Google Scholar 

  3. Mahmoodi, S.N., Jalili, N.: Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers. Int. J. Non-Linear Mech. 42(4), 577–587 (2007)

    Article  Google Scholar 

  4. Gao, J., Shen, Y.: Active control of geometrically nonlinear transient vibration of composite plates with piezoelectric actuators. J. Sound Vib. 264(4), 911–928 (2003)

    Article  MATH  Google Scholar 

  5. Mahmoodi, S.N., Jalili, N., Ahmadian, M.: Subharmonics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers. Nonlinear Dyn. 59(3), 397–409 (2010)

    Article  MATH  Google Scholar 

  6. Shooshtari, A., Hoseini, S.M., Mahmoodi, S.N., Kalhori, H.: Analytical solution for nonlinear free vibrations of viscoelastic microcantilevers covered with a piezoelectric layer. Smart Mater. Struct. 21(7), 075015 (2012)

  7. Hosseini, S.M., Shooshtari, A., Kalhori, H., Mahmoodi, S.N.: Nonlinear-forced vibrations of piezoelectrically actuated viscoelastic cantilevers. Nonlinear Dyn. 1–13 (2014) . doi: 10.1007/s11071-014-1461-7

  8. Omidi, E., Korayem, A.H., Korayem, M.H.: Sensitivity analysis of nanoparticles pushing manipulation by AFM in a robust controlled process. Precis. Eng. 37(3), 658–670 (2013)

    Article  Google Scholar 

  9. Korayem, M.H., Omidi, E.: Robust controlled manipulation of nanoparticles using atomic force microscope. Micro Nano Lett. 7(9), 927–931 (2012)

    Article  Google Scholar 

  10. Alhazza, K.A., Daqaq, M.F., Nayfeh, A.H., Inman, D.J.: Non-linear vibrations of parametrically excited cantilever beams subjected to non-linear delayed-feedback control. Int. J. Non-Linear Mech. 43(8), 801–812 (2008)

    Article  MATH  Google Scholar 

  11. Jun, L., Xiaobin, L., Hongxing, H.: Active nonlinear saturation-based control for suppressing the free vibration of a self-excited plant. Commun. Nonlinear Sci. Numer. Simul. 15(4), 1071–1079 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Warminski, J., Bochenski, M., Jarzyna, W., Filipek, P., Augustyniak, M.: Active suppression of nonlinear composite beam vibrations by selected control algorithms. Commun. Nonlinear Sci. Numer. Simul. 16(5), 2237–2248 (2011)

    Article  Google Scholar 

  13. Warminski, J., Cartmell, M.P., Mitura, A., Bochenski, M.: Active vibration control of a nonlinear beam with self- and external excitations. Shock Vib. 20(6), 1033–1047 (2013)

    Article  Google Scholar 

  14. Bouchard, M., Paillard, B.: Improved training of neural networks for the nonlinear active control of sound and vibration. IEEE Trans. Neural Netw. 10(2), 391–401 (1999)

    Article  Google Scholar 

  15. Ghandchi Tehrani, M., Wilmshurst, L., Elliott, S.J.: Receptance method for active vibration control of a nonlinear system. J. Sound Vib. 332(19), 4440–4449 (2013)

    Article  Google Scholar 

  16. Oueini, S.S., Nayfeh, A.H.: Single-mode control of a cantilever beam under principal parametric excitation. J. Sound Vib. 224(1), 33–47 (1999)

    Article  Google Scholar 

  17. Fanson, J.L., Caughey, T.K.: Positive position feedback control for large space structures. AIAA J. 28(4), 717–724 (1990)

    Article  Google Scholar 

  18. Jun, L.: Positive position feedback control for high-amplitude vibration of a flexible beam to a principal resonance excitation. Shock Vib. 17(2), 187–203 (2010)

  19. El-Ganaini, W., Saeed, N.A., Eissa, M.: Positive position feedback (PPF) controller for suppression of nonlinear system vibration. Nonlinear Dyn. 72(3), 517–537 (2013)

    Article  MathSciNet  Google Scholar 

  20. Friswell, M.I., Inman, D.J., Rietz, R.W.: Active damping of thermally-induced vibrations. J. Intell. Mater. Syst. Struct. 8(8), 678–685 (1997)

    Article  Google Scholar 

  21. Mahmoodi, S.N., Ahmadian, M.: Active vibration control with modified positive position feedback. J. Dyn. Syst. Meas. Control 131(4), 041002 (2009)

  22. Omidi, E., Mahmoodi, S.N.: Active vibration control of resonant systems via multivariable modified positive position feedback. In: ASME Dynamic Systems and Control Conference, Anonymous AMSE, Stanford University, Palo Alto, CA (2013)

  23. Omidi, E., McCarty, R., Mahmoodi, S.N.: Implementation of modified positive velocity feedback controller for active vibration control in smart structures. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Anonymous International Society for Optics and Photonics, pp. 90571N–90571N-11, San Diego, California, USA, (2014)

  24. Mahmoodi, S.N., Craft, M.J., Southward, S.C., Ahmadian, M.: Active vibration control using optimized modified acceleration feedback with adaptive line enhancer for frequency tracking. J. Sound Vib. 330(7), 1300–1311 (2011)

    Article  Google Scholar 

  25. Meirovitch, L.: Principles and Techniques of Vibrations. Prentice Hall, Englewood Cliffs (1997)

    Google Scholar 

  26. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  27. Hsieh, S., Shaw, S.W., Pierre, C.: Normal modes for large amplitude vibration of a cantilever beam. Int. J. Solids Struct. 31(14), 1981–2014 (1994)

    Article  MATH  Google Scholar 

  28. Mahmoodi, S.N., Khadem, S.E., Kokabi, M.: Non-linear free vibrations of Kelvin–Voigt visco-elastic beams. Int. J. Mech. Sci. 49(6), 722–732 (2007)

    Article  Google Scholar 

  29. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  30. Kaliakin, V.N.: Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods. CRC Press, Boca Raton (2001)

    Google Scholar 

  31. Mahmoodi, S.N., Jalili, N., Daqaq, M.F.: Modeling nonlinear dynamics, and identification of a piezoelectrically actuated microcantilever sensor. IEEE Trans. Mechatron. 13(1), 58–65 (2008)

  32. Liao, X., Yu, P.: Absolute Stability of Nonlinear Control Systems, 2nd edn. Springer Science, New York (2008)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nima Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi, E., Mahmoodi, S.N. Nonlinear vibration suppression of flexible structures using nonlinear modified positive position feedback approach. Nonlinear Dyn 79, 835–849 (2015). https://doi.org/10.1007/s11071-014-1706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1706-5

Keywords

Navigation