Skip to main content
Log in

Nonlinear adaptive neural network control for a model-scaled unmanned helicopter

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a nonlinear adaptive neural network control is proposed for trajectory tracking of a model-scaled helicopter. The purpose of this research is to reduce the ultimate bounds of tracking errors resulted from small coupling forces (or small parasitic body forces) and aerodynamic uncertainties. The proposed control is designed under backstepping framework, with neural network compensators being added. Updating laws of neural networks are designed through projection algorithm, so that adaptive parameters are bounded. Derivatives of virtual controls are obtained through command filters. It is proved that, by using neural network compensators, tracking errors of the closed-loop system can be restricted within very small ultimate bounds. Superiority of the proposed nonlinear adaptive neural network control over a backstepping control is demonstrated by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmed, B., Pota, H.R., Garratt, M.: Flight control of a rotary wing uav using backstepping. Int. J. Robust Nonlinear Control 20(6), 639–658 (2010)

    MathSciNet  Google Scholar 

  2. Bramwell, A.R.S., Done, G., Balmford, D.: Bramwell’s Helicopter Dynamics, 2nd edn. Butterworth Heinmann, Oxford (2001)

    Google Scholar 

  3. Cai, G., et al.: Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatronics 21(2), 803–820 (2011)

    Article  Google Scholar 

  4. Dong, W., et al.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Tech. 20(3), 566–580 (2012)

    Article  Google Scholar 

  5. Farrell, J.A., et al.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391–1395 (2009)

    Article  Google Scholar 

  6. Gadewadikar, J., et al.: Structured \(H_\infty \) command and control-loop design for unmanned helicopters. J. Guid. Control Dyn. 31(4), 1093–1102 (2008)

    Article  Google Scholar 

  7. Gavrilets V.: Autonomous aerobatic maneuvering of miniature helicopter. Ph.D. Diss., M.I.T. (2003)

  8. Ge, S.S.: Stable Adaptive Neural Network Control. Kluwer Academic Publishers, Norwell (2001)

    Google Scholar 

  9. Ghorashi, M.: Nonlinear analysis of the dynamics of articulated composite rotor blades. Nonlinear Dyn. 67, 227–249 (2012)

    Article  MathSciNet  Google Scholar 

  10. Isidori, A., Marconi, L., Serrani, A.: Robust nonlinear motion control of a helicopter. IEEE Trans. Autom. Control 48(3), 413–426 (2003)

    Article  MathSciNet  Google Scholar 

  11. Koo T.J., Sastry S.: Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th IEEE Conference on Decision and Control, pp. 3635–3640 (1998)

  12. Lacarbonara, W., Arvin, H., Bakhtiari-Nejad, F.: A geometrically exact approach to the overall dynamics of elastic rotating blades - part 1: linear modal properties. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0486-z

  13. Leonard, F., Martini, A., Abba, G.: Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts. IEEE Trans. Control Syst. Tech. 20(1), 154–163 (2012)

    Article  Google Scholar 

  14. Liu, C., Chen, W.H., Andrews, J.: Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers. Control Eng. Prac. 20, 258–268 (2012)

    Article  Google Scholar 

  15. Liu, H., Derawi, D., Kim, J., Zhong, Y.: Robust optimal attitude control of hexarotor robotic vehicles. Nonlinear Dyn. 74, 1155–1168 (2013)

  16. Liu, H., Yu, Y., Zhong, Y.: Robust trajectory tracking control for a laboratory helicopter. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1324-2

  17. Marconi, L., Naldi, R.: Robust full degree-of-freedom tracking control of a helicopter. Automatica 43(11), 1909–1920 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  19. Raptis, I.A., Valavanis, K.P., Vachtsevanos, G.J.: Linear tracking control for small-scale unmanned helicopters. IEEE Trans. Control Syst. Tech. 20(4), 995–1010 (2012)

    Article  Google Scholar 

  20. Raptis, I.A., Valavanis, K.P., Moreno, W.A.: A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Trans. Control Syst. Tech. 19(2), 465–473 (2011)

    Article  Google Scholar 

  21. Shin, J., Kim, H.J., Kim, Y., Dixon, W.E.: Autonomous flight of the rotorcraft-based UAV using RISE feedback and NN feedforward terms. IEEE Trans. Control Syst. Tech. 20(5), 1392–1399 (2012)

    Article  Google Scholar 

  22. Xu, Y.: Multi-timescale nonlinear robust control for a miniature helicopter. IEEE Trans. Aerosp. Electron. Syst. 46(2), 656–671 (2010)

    Article  Google Scholar 

  23. Zheng, Z., Huo, W.: Planar path following control for stratospheric airship. IET Control Theory Appl. 7(2), 185–201 (2013)

    Article  MathSciNet  Google Scholar 

  24. Zheng, Z., Huo, W., Wu, Z.: Autonomous airship path following control: theory and experiments. Control Eng. Pract. 21(6), 769–788 (2013)

    Article  Google Scholar 

  25. Zhu, B., Huo, W.: Robust nonlinear control for a model-scaled helicopter with parameter uncertainties. Nonlinear Dyn. 73, 1139–1154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, B., Huo, W.: Trajectory linearization control for a miniature unmanned helicopter. Int. J. Control Autom. Syst. 11(2), 286–295 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The author owes great thanks to the anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B. Nonlinear adaptive neural network control for a model-scaled unmanned helicopter. Nonlinear Dyn 78, 1695–1708 (2014). https://doi.org/10.1007/s11071-014-1552-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1552-5

Keywords

Navigation