Skip to main content
Log in

Particle filtering for nonlinear dynamic state systems with unknown noise statistics

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we provide a tutorial for the applications of cost-reference particle filter (CRPF) to problems in signal processing disciplines. CRPF works in particle filtering (PF) framework although it may not be viewed as a Bayesian approach because the estimation is not based on the expected posterior function. CRPF has an interesting feature, i.e., the information of the noise statistics is not needed in its applications as opposed to the cases of the Kalman filter and standard PF approaches that work in dynamic state systems. Therefore, it is highly effective when the noise information is not available; nevertheless, it may not show optimal performance in general. In this paper, we introduce and disseminate this useful approach that is not known to many researchers even in related fields, and show how to effectively apply to problems which we provide as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Al-Shabi, M., Gadsden, S.A., Habibi, S.R.: Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter. Signal Process. 93(2), 420–431 (2013)

  2. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)

    Article  Google Scholar 

  3. Bazin, J.C., Kweon, I., Demonceaux, C., Vasseur, P.: UAV attitude estimation by vanishing points in catadioptric images. In: IEEE International Conference on Robotics and Automation ICRA (2008)

  4. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Telecommun. 18(3), 535–547 (2000)

    Article  Google Scholar 

  5. Bianchi, G., Fratta, L., Oliveri, M.: Performance evaluation and enhancement of the csma/ca mac protocol for 802.11 wireless lans. Proc. PIMRC 2, 392–396 (1996)

    Google Scholar 

  6. Bianchi, G., Tinnirello, I.: Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. Proc. Infocom. 2, 844–852 (2003)

    Google Scholar 

  7. Bianchi, G., Tinnirello, I.: Interference estimation in IEEE 802.11 networks. IEEE Control Syst. 30(2), 30–43 (2010)

    Article  MathSciNet  Google Scholar 

  8. Bugallo, M.F., Xu, S., Djurić, P.M.: Performance comparison of EKF and particle filtering methods for maneuvering targets. Digital Signal Process. 17(4), 774–786 (2007)

    Article  Google Scholar 

  9. Cai, G., Chen, B.B., Peng, K., Dong, M., Lee, T.H.: Modeling and control of the yaw channel of a UAV helicopter. IEEE Trans. Ind. Electron. 55(9), 3426–3434 (2008)

    Article  Google Scholar 

  10. Campolo, D., Schenato, L., Lijuan, P., Deng, X., Guglielmelli, E.: Multimodal sensor fusion for attitude estimation of micromechanical flying insects: a geometric approach. In: IROS 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (2008)

  11. Canuto, E., Musso, F., Ospina, J.: Embedded model control: submicroradian horizontality of the nanobalance thrust-stand. IEEE Trans. Ind. Electron. 55(9), 3435–3446 (2008)

  12. Carmona, M., Michel, O., Lacoume, J.L., Sprynski, N., Nicolas, B.: An analytical solution for the complete sensor network attitude estimation problem. Signal Process. 93(4), 652–660 (2013)

    Article  Google Scholar 

  13. Euston, M., Coote, P., Mahony, R., Kim, J., Hamel, T.: A complementary filter for attitude estimation of a fixed-wing UAV. In: IROS 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (2008)

  14. Fei, Y., Shen, X.: Nonlinear analysis on moving process of soft robots. Nonlinear Dyn. 73, 671–677 (2013)

    Article  MathSciNet  Google Scholar 

  15. Fu, C., Chen, K.: Gait synthesis and sensory control of stair climbing for a humanoid robot. IEEE Trans. Ind. Electron. 55(5), 2111–2120 (2008)

    Article  Google Scholar 

  16. Fusco, T., Marrone, F., Tanda, M.: Semiblind techniques for carrier frequency offset estimation in OFDM systems. Signal Process. 88(3), 704–718 (2008)

    Article  MATH  Google Scholar 

  17. Ge, Q., Xu, D., Wen, C.: Cubature information filters with correlated noises and their applications in decentralized fusion. Signal Process. 94, 434–444 (2014). doi:10.1016/j.sigpro.2013.06.015

  18. Gonzalez, G.J., Gregorio, F.H., Cousseau, J., Werner, S., Wichman, R.: Data-aided CFO estimators based on the averaged cyclic autocorrelation. Signal Process. 93(1), 217–229 (2013)

    Article  Google Scholar 

  19. Hayes, M.H.: Statistical Digital Signal Processing and Modeling. Wiley, New York (1996)

    Google Scholar 

  20. Jwo, D., Yang, C., Chuang, C., Lee, T.: Performance enhancement for ultra-tight GPS/INS integration using a fuzzy adaptive strong tracking unscented Kalman filter. Nonlinear Dyn. 73, 377–3995 (2013)

    Article  MathSciNet  Google Scholar 

  21. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME 82(Series D), 35–45 (1960)

  22. Karimpour, H., Mahzoon, M., Keshmiri, M.: Exploring the analogy for adaptive attitude control of a ground-based satellite system. Nonlinear Dyn. 69(4), 2221–2235 (2012). doi:10.1007/s11071-012-0421-3

    Article  MathSciNet  Google Scholar 

  23. Kay, S.M.: Fundamentals of statistical signal processing. Estimation Theory, vol. 1. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  24. Kay, S.M.: Fundamentals of statistical signal processing. Estimation Theory, Chapter 13. Signal processing series. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  25. Kim, J., Lee, J., Serpedin, E., Qaraqe, K.: A robust estimation scheme for clock phase offsets in wireless sensor networks in the presence of non-Gaussian random delays. Signal Process. 89(6), 1155–1161 (2009)

    Article  MATH  Google Scholar 

  26. Kim, J., Serpedin, E., Shin, D.: Improved particle filtering-based estimation of the number of competing stations in IEEE 802.11 networks. IEEE Signal Process. Lett. 15, 87–90 (2008)

    Article  Google Scholar 

  27. Kim, K.: Rao-blackwellized Gauss-Hermite filter for joint state estimation in cyclic prefixed single-carrier systems. Signal Process. 92(9), 2105–2115 (2012)

    Article  Google Scholar 

  28. Leavitt, J., Sideris, A., Bobrow, J.E.: High bandwidth tilt measurement using low-cost sensors. IEEE Trans. Mechatron. 11(3), 320–327 (2006)

    Article  Google Scholar 

  29. Liang, Y., Xu, S., Ting, L.: T-S model-based SMC reliable design for a class of nonlinear control systems. IEEE Trans. Ind. Electron. 56(9), 3286–3295 (2009)

    Article  Google Scholar 

  30. Lim, J., Hong, D.: Cost reference particle filtering approach to high-bandwidth tilt estimation. IEEE Trans. Ind. Electron. 57(11), 3830–3839 (2010)

    Article  Google Scholar 

  31. Lim, J., Hong, D.: Gaussian particle filtering approach for carrier frequency offset estimation in OFDM systems. IEEE Signal Process. Lett. 20(4), 367–370 (2013)

    Article  Google Scholar 

  32. Liu, T., Li, H.: Blind carrier frequency offset estimation in OFDM systems with I/Q imbalance. Signal Process. 89(11), 2286–2290 (2009)

    Article  MATH  Google Scholar 

  33. Liu, X., Lin, Z., Acton, S.T.: A grid-based Bayesian approach to robust visual tracking. Signal Process. 22(1), 54–65 (2012)

    MathSciNet  Google Scholar 

  34. Míguez, J., Bugallo, M.F., Djurić, P.M.: A new class of particle filters for random dynamical systems with unknown statistics. EURASIP J. Appl. Signal Process. 2004(15), 2287–2294 (2004)

    Article  Google Scholar 

  35. van der Merwe, R., Wan, E.: Gaussian mixture sigma-point particle filters for sequential probabilistic inference in dynamic state-space models. In: Proceedings. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 6, pp. 701–704 (2003).

  36. Mobayen, S., Majd, V.: Robust tracking control method based on composite nonlinear feedback technique for linear systems with time-varying uncertain parameters and disturbances. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0439-6

  37. Olson, C., Nichols, J., Virgin, L.: Parameter estimation for chaotic systems using a geometric approach: theory and experiment. Nonlinear Dyn. 70(1), 381–391 (2012). doi:10.1007/s11071-012-0461-8

    Article  MathSciNet  Google Scholar 

  38. Suh, Y.S.: Attitude estimation by multiple-mode Kalman filters. IEEE Trans. Ind. Electron. 53(4), 1386–1389 (2006)

    Article  MathSciNet  Google Scholar 

  39. Tang, T.: A helicopter’s formation flying model in the low airspace with two telegraph poles and electrical wire. Nonlinear Dyn. 69, 399–408 (2012)

    Article  Google Scholar 

  40. Wang, L., Zhang, X., Xu, D., Huang, W.: Study of differential control method for solving chaotic solutions of nonlinear dynamic system. Nonlinear Dyn. 67(4), 2821–2833 (2012)

  41. Wang, W., Liu, Z., Xie, R.: Quadratic extended Kalman filter approach for GPS/INS integration. Aerosp. Sci. Technol. 10, 709–713 (2006)

    Article  MATH  Google Scholar 

  42. Wendel, J., Trommer, G.F.: Tightly coupled GPS/INS integration for missile applications. Aerosp. Sci. Technol. 8, 627–634 (2004)

  43. Won, S.H.P., Golnaraghi, F., Melek, W.W.: A fastening tool tracking system using an IMU and a position sensor with Kalman filters and a fuzzy expert system. IEEE Trans. Ind. Electron. 56(5), 1782–1792 (2009)

  44. Xu, S.: Particle filtering for systems with unknown noise probability distributions. Ph.D. thesis, Department of Electrical and Computer Engineering, Stony Brook University-SUNY, Stony Brook, New York 11794 (2006)

  45. Yang, J., Ge, H.: An improved multi-target tracking algorithm based on cbmember filter and variational bayesian approximation. Signal Process. 93(9), 2510–2515 (2013)

    Article  Google Scholar 

  46. Yu, Y.: Combining \(\text{ H }_{\infty }\) filter and cost-reference particle filter for conditionally linear dynamic systems in unknown non-gaussian noises. Signal Process. 93(7), 1871–1878 (2013)

    Article  Google Scholar 

  47. Yu, Y., Zheng, X.: Particle filter with ant colony optimization for frequency offset estimation in ofdm systems with unknown noise distribution. Signal Process. 91(5), 1339–1342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, Y., Ji, H.: A novel fast partitioning algorithm for extended target tracking using a gaussian mixture PHD filter. Signal Process. 93(11), 2975–2985 (2013)

    Article  Google Scholar 

  49. Zuo, J., Liang, Y., Zhang, Y., Pan, Q.: Particle filter with multimode sampling strategy. Signal Process. 93(11), 3192–3201 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by “Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2011-0009255)” and “the Ministry of Science, ICT and Future Planning, Korea, under the ‘IT Consilience Creative Program’ (NIPA-2014-H0201-14-1001) supervised by the National IT Industry Promotion Agency.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaechan Lim.

Appendix

Appendix

1.1 MATLAB m-files for tracking a target by CRPF with Gaussian mixture noise

In this appendix section, we provide m-files for MATLAB simulations as shown in Figs. 2021. The m-file generates the result that CRPF tracks a target in 2-D space, and the measurement noise is a mixture Gaussian. Three MATLAB figures are generated: the first one shows the track of a target and the estimated tracking by CRPF, and next two figures show the error with respect to each coordinate (Fig. 21).

Fig. 20
figure 20

A MATLAB m-file for tracking a target by CRPF with Gaussian mixture noise

Fig. 21
figure 21

A MATLAB m-file function, “resampling 2” in Fig. 20, a selection (resampling) algorithm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J. Particle filtering for nonlinear dynamic state systems with unknown noise statistics. Nonlinear Dyn 78, 1369–1388 (2014). https://doi.org/10.1007/s11071-014-1523-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1523-x

Keywords

Navigation