Skip to main content

Advertisement

Log in

Heavy rains and hydrogeological disasters on February 18th–19th, 2023, in the city of São Sebastião, São Paulo, Brazil: from meteorological causes to early warnings

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This study provides a thorough analysis of the landslides that occurred in the city of São Sebastião, on the northern coast of São Paulo state, Brazil, in February 18th–19th, 2023. The meteorological condition during this event was characterized by a cold front crossing over a warmer-than-normal subtropical South Atlantic, off the coast of São Paulo. Combined with the orographic effect of the Serra do Mar Mountain, the front remained stationary over the northern coastal areas of the state of São Paulo, causing an extreme and historic heavy precipitation event. An unprecedented volume of rain, amounting to 683 mm in less than 15 h, triggered landslides that generated 65 casualties and damages. Although alerts were clearly issued in advance, response among the communities was minimal, indicating the ineffectiveness of current early warning system in place. This calls for improved public policies, communication and the possible adoption of multi-hazard early warning systems to reduce risk in vulnerable areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Source: GFS-NCEP

Fig. 5

Source: Colorado State University—https://rammb-slider.cira.colostate.edu/

Fig. 6

Source: CEMADEN environmental network

Fig. 7

Source: NOAA Coral Reef Watch, Source: Global Forecast System Model analysis

Fig. 8
Fig. 9
Fig. 10

© 2023 Planet Labs Inc. All rights reserved. Elevation data is extracted from MDT ©JAXA Alos PALSAR with a resolution of 12.5 m

Fig. 11

© 2023 Planet Labs Inc. All rights reserved. Elevation data is extracted from MDT ©JAXA Alos PALSAR with a resolution of 12.5 m. Further details about the density calculation method in the text

Fig. 12

© 2023 Planet Labs Inc.). Susceptibility map source: CPRM/IPT (201)

Fig. 13
Fig. 14
Fig. 15
Fig. 16

Source: CEMADEN

Fig. 17

Similar content being viewed by others

Data availability

All data used in this study is freely available under request from the national meteorological service of Brazil and from CEMADEN.

References

  • Alcântara E, Marengo J, Mantovani J, Londe LR, San LY, Park E, Lin YN, Wang J, Mendes T, Cunha AP, Pampuch L, Seluchi ME, Simões S, Cuartas LA, Goncalves D, Massi K, Alvalá RCS, Moraes OL, Souza Filho C, Mendes R, Nobre CA (2023) Deadly disasters in southeastern South America: flash floods and landslides of February 2022 in Petrópolis, Rio de Janeiro. Nat Hazards Earth Syst Sci 23:1–19. https://doi.org/10.5194/nhess-23-1-2023

    Article  Google Scholar 

  • Alvala RCS, Assis Dias M, Saito SM, Stenner C, Franco C, Amadeu P, Ribeiro J, de Moraes SJ, Nobre CA (2019) Mapping characteristics of at-risk population to disasters in the context of Brazilian early warning system. Int J Disaster Risk Reduc 41:101326. https://doi.org/10.1016/j.ijdrr.2019.101326,2-19

    Article  Google Scholar 

  • Assis Dias M, Saito SM, Alvalá RCS, Seluchi ME, Bernardes T, Camarinha PIM, Stenner C, Nobre CA (2020) Vulnerability index related to populations at-risk for landslides in the Brazilian Early Warning System (BEWS). Int J Disaster Risk Reduc 49:101742. https://doi.org/10.1016/j.ijdrr.2020.101742

    Article  Google Scholar 

  • Banco Mundial, Global Facility for Disaster Reduction and Recovery, Fundação de Amparo à Pesquisa e Extensão Universitária FAPEU, Universidade Federal de Santa Catarina UFSC, Centro de Estudos e Pesquisas em Engenharia e Defesa Civil CEPED (2020) Gestão de risco de desastres no Brasil: panorama atual e tendências / Banco Mundial. Global Facility for Disaster Reduction and Recovery. Fundação de Amparo à Pesquisa e Extensão Universitária. Centro de Estudos e Pesquisas em Engenharia e Defesa Civil. [Organização Rafael Schadeck] – Florianópolis: FAPEU, 2020, 100 p.

  • Bortolozo CA, Mendes TSG, Egas HM, Metodiev D, Moraes MVD, Andrade MRMD, Pryer T, Ashby B, Motta MFB, Simões SJC, Pampuch LA, Mendes RM, Moraes MAED (2023) Enhancing landslide predictability: validating geophysical surveys for soil moisture detection in 2D and 3D scenarios. J S Am Earth Sci 132:104664. https://doi.org/10.1016/j.jsames.2023.104664

    Article  Google Scholar 

  • Cabral V, Reis F, Veloso V, Correa C, Kuhn C, Zarfl C (2022) The consequences of debris flows in Brazil: a historical analysis based on recorded events in the last 100 years. Landslides. https://doi.org/10.1007/s10346-022-01984-7

    Article  Google Scholar 

  • Camarinha PIM, and RCS Alvala (2017) Indice de Vulnerabilidade aos desastres naturais decorrentes de deslizamentos de terra, em cenários de mudanças climáticas, para o Estado de São Paulo - Brasil. In: IV Congresso Internacional de Riscos, 2017, Coimbra. Anais do IV Congresso Internacional de Riscos 1. 2017

  • Camarinha PIM (2016) Vulnerabilidade aos desastres naturais decorrentes de deslizamentos de terra em cenários de mudanças climáticas na porção paulista da Serra do Mar. Tese (Doutorado em Ciência do Sistema Terrestre) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos.

  • Carou CB, Vieira BC, Martins TD, Gramani MF (2017). Inventário dos Escorregamentos da Bacia do Rio Gurutuba, Vale do Ribeira (SP), Revista Do Departamento De Geografia Spe, https://doi.org/10.11606/rdg.v0ispe.133377

  • Carvalho LMV, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic Convergence Zone. J Clim 15:2377–2394

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic Convergence Zone: intensity, form, persistence and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17:88–108

    Article  Google Scholar 

  • Cavalcanti IFA (2012) Large scale and synoptic features associated with extreme precipitation over South America: a review and case studies for the first decade of the 21st century. Atmos Res 118:27–40. https://doi.org/10.1016/j.atmosres.2012.06.012

    Article  Google Scholar 

  • CEPED (2013) Atlas Brasileiro de Desastres Naturais – 1991 a 2012, Second Edition. CEPED UFSC – Centro de Estudos e Pesquisas em Engenharia e Defesa Civil, Florianópolis, Santa Catarina, Brasil. 104 p.

  • CPRM/IPT (2017) Carta de suscetibilidade a movimentos gravitacionais de massa e inundações: município de São Sebastião – SP, 2017

  • De Ploey J, Cruz O (1979) Landslides in the Serra do Mar, Brazil. CATENA 6:111–122. https://doi.org/10.1016/0341-8162(79)90001-8

    Article  Google Scholar 

  • Dias HC, Hölbling D, Grohmann CH (2023) Rainfall-induced shallow landslide recognition and transferability using object-based image analysis in Brazil. Remote Sens 15:5137. https://doi.org/10.3390/rs15215137

    Article  Google Scholar 

  • Donnini M, Santangelo M, Gariano SL, Bucci F, Peruccacci S, Alvioli M, Fiorucci F (2023) Landslides triggered by an extraordinary rainfall event in Central Italy on September 15, 2022. Landslides 20(10):2199–2211. https://doi.org/10.1007/s10346-023-02109-4

    Article  Google Scholar 

  • Esposito G, Salvati P (2023) Bianchi V (2023) Insights gained into geo-hydrological disaster management 25 years after the catastrophic landslides of 1998 in southern Italy. Int J Disaster Risk Reduct 84:103440. https://doi.org/10.1016/j.ijdrr.2022.103440

    Article  Google Scholar 

  • Fernandes NF, Guimarães RF, Gomes RAT, Vieira BC, Montgomery DR, Greenberg H (2004) Topographic controls of landslides in Rio de Janeiro: field evidence and modeling. CATENA 55(2):163–181. https://doi.org/10.1016/S0341-8162(03)00115-2

    Article  Google Scholar 

  • Ferrario MF, Livio F (2024) Rapid mapping of landslides induced by heavy rainfall in the Emilia-Romagna (Italy) region in May 2023. Remote Sens 16:122. https://doi.org/10.3390/rs16010122

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason BM, Haylock M, Klein Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19(3):193–212. https://doi.org/10.3354/cr019193

    Article  Google Scholar 

  • IBGE (2010) Instituto Brasileiro de Geografia e Estatística, Censo demográfico 2010. http://www.ibge.gov.br/home/estatistica/populacao/censo2010/default, last accessed April 24, 2023

  • IBGE (2021) Demographic census 2021. Rio de Janeiro, 2021. http://www.ibge.gov.br, 2021, last accessed March 2, 2023.

  • IPCC (2023) Synthesis Report of the IPCC Sixth Assessment Report (AR6). WMO, Geneva, Switzerland

    Google Scholar 

  • IPCC (2022) Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA

  • Jibson RW (2006) The 2005 La Conchita, California, landslide. Landslides 3:73–78. https://doi.org/10.1007/s10346-005-0011-2

    Article  Google Scholar 

  • Kendall MG (1975) Time Series, 2nd edn. Hefner, New York, NY, USA

    Google Scholar 

  • Lacerda WA (2007) Landslide initiation in saprolite and colluvium in southern Brazil: field and laboratory observations. Geomorphology 87(3):104–119. https://doi.org/10.1016/j.geomorph.2006.03.037

    Article  Google Scholar 

  • Liebmann B, Jones C, Carvalho LMV (2001) (2001) Interannual variability of daily extreme precipitation events in the state of Sao Paulo. Brazil J Clim 14:208–218. https://doi.org/10.1175/1520-0442(2001)014%3c0208:IVODEP%3e2.0.CO;2

    Article  Google Scholar 

  • Londe LR, Gonzaga Moura L, Coutinho MP, Marchezini V, Soriano E (2020) (2020) Vulnerability, health and disasters in São Paulo coast (Brazil): challenges for a sustainable development. Ambient Soc 21:e01022. https://doi.org/10.1590/1809-4422asoc0102r2vu18l1ao

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • Marengo JA, Bustamante JI, Rojas MI, Soares WR (2003) Avaliação dos eventos extremos no Norte da Venezuela de 13–17 dezembro 1999: Estudos Observacionais. Revista Brasileira De Meteorologia 18(1):43060

    Google Scholar 

  • Marengo JA, Camarinha PI, Diniz ALMF, Betts RA (2021a) Extrem rainfall and hydro-geo-meteorological disaster risk in 1.5, 2.0, and 4.0 °c global warming scenarios: an analysis for Brazil. Front. Clim 3:610433–610498. https://doi.org/10.3389/fclim.2021.610433

    Article  Google Scholar 

  • Marengo JA, Cunha AP, Cuartas LA, Deusdara Leal K, Broedel E, Seluchi ME, Michelin CM, De Praga Baião M, Chuchón Angulo E, Almeida EK, Kazmierczak ML, Mateus NPA, Silva RC, Bender F (2021b) Extreme drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Front Water 3:639204. https://doi.org/10.3389/frwa.2021.639204

    Article  Google Scholar 

  • Marengo JA, Alcantara E, Cunha AP, Seluchi ME, Nobre CA, Dolif G, Goncalves D, Assis Dias M, Cuartas LA, Bender F, Ramos AM, Mantovani JR, Alvalá RCS, Moraes OL (2023a) Flash floods and landslides in the city of Recife, Northeast Brazil after heavy rain on May 25–28, 2022: causes, impacts, and disaster preparedness. Weather Climate Extremes 39:100545. https://doi.org/10.1016/j.wace.2022.100545

    Article  Google Scholar 

  • Marengo JA, Seluchi ME, Cunha AP, Cuartas LA, Goncalves D, Sperling VB, Ramos AM, Dolif G, Saito SM, Bender F, Lopes TR, Alvala RCS, Moraes OL (2023b) Heavy rainfall associated with floods in southeastern Brazil in November–December 2021. Nat Hazards 116:3617–3644. https://doi.org/10.1007/s11069-023-05827-z

    Article  Google Scholar 

  • Marengo, J.A., Alves, L.M., (2012) The 2011 intense rainfall and floods in Rio de Janeiro. Sidebar 7.1, State of the Climate in (2011) Bull Am Meteorol Soc 93(7):S176. https://doi.org/10.1175/2012BAMSStateoftheClimate.1

    Article  Google Scholar 

  • Mendes RM, Magalhaes de Andrade MR, Graminha CA, Prieto CC, Fernandes de Avila F, Camarinha PIM (2017) Stability analysis on urban slopes: case study of an anthropogenic-induced landslide in Sa˜o Jose´ dos Campos. Brazil, Geotech Geol Eng,. https://doi.org/10.1007/s10706-017-0303-z

    Article  Google Scholar 

  • Mileti DS, Peek L (2000) The social psychology of public response to warnings of a nuclear power plant accident. J Hazard Mater 75(2–3):181–194. https://doi.org/10.1016/s0304-3894(00)00179-5

    Article  CAS  Google Scholar 

  • Moraes OL (2023) Proposing a metric to evaluate early warning system applicable to hydrometeorological disasters in Brazil. Int J Disaster Risk Reduct 87:103579. https://doi.org/10.1016/j.ijdrr.2023.103579

    Article  Google Scholar 

  • Moraes M, Filho W, Mendes R, Bortolozo C, Metodiev D, Andrade M, Egas H, Mendes T, Pampuch L (2024) Antecedent precipitation index to estimate soil moisture and correlate as a triggering process in the occurrence of landslides. Int J Geosci 15:70–86. https://doi.org/10.4236/ijg.2024.151006

    Article  Google Scholar 

  • Muza MN, Carvalho LMV, Jones C, Liebmann B (2009) Intraseasonal and interannual variability of extreme dry and wet events over southeastern South America and the subtropical Atlantic during austral summer. J Clim 22(7):1682–1699

    Article  Google Scholar 

  • Nadim F, Jaedicke C, Smebye H, and Kalsnes B (2013) Assessment of global landslide hazard hotspots. In: Sassa K, Rouhban B, Briceno S, McSaveney M, He B (Eds.), Landslides: Global Risk Preparedness, Springer-Verlag, https://doi.org/10.1007/978-3-642-22087-64.

  • Nunes LH (2015). Urbanização e desastres naturais na América do Sul: abrangência América do Sul. São Paulo: Editora Oficina de Textos, 112p.

  • Paiva APV, (2007) Transformação e conservação da paisagem costeira: considerações sobre o Município de São Sebastião. MS. Thesis, Faculty of Architecture and Urbanism, FAU-USP, University of São Paulo, São Paulo, Brazil, 195 p.

  • Instituto de Pesquisas tecnológicas do estado de São Paulo IPT (2018) Elaboração do Plano Municipal de Redução de Riscos (PMRR) para o Município de São Sebastião, SP. Relatório Técnico Nº 155131–205 SDECTI/Patem, 2018. 3v., 2 mapas 1:20.000.

  • Ren D (2014) The devastating Zhouqu storm-triggered debris flow of August 2010: Likely causes and possible trends in a future warming climate. J Geophys Res Atmos 119:3643–3662. https://doi.org/10.1002/2013JD020881

    Article  Google Scholar 

  • Ribeiro RR, Amaral R, Galina MH, Rossini-Penteado D (2007) O município na gestão dos desastres naturais: breve discussão de aspectos legais e técnicos. Santos, SP. In: 2º SIBRADEN, Simpósio Brasileiro de Desastres Naturais e Tecnológicos, Santos, SP, 9 a 13 de dezembro de 2007. Anais…, CD-ROM (available from https://www.infraestruturameioambiente.sp.gov.br/institutogeologico/2006/02/mapeamento-das-areas-de-risco-a-escorregamentos-e-inundacoes-nos-municipios-de-sao-sebastiao-ubatuba-piedade-tapirai-e-franco-da-rocha/)

  • Ross JLS, and IC Moroz, (1997) Mapa Geomorfológico do Estado de São Paulo. Laboratório de Geomorfologia, Departamento de Geografia – FFLCH-USP/Laboratório de Cartografia Geotécnica – IPT/FAPESP – Fundação de Amparo à Pesquisa do Estado de São Paulo, 64p., mapa 1:500.000, 1997.

  • Ross JLS, (2002) Ribeira do Iguape Basin Morphogenesis and the Environmental Systems. GEOUSP: Espaço e Tempo, 12.

  • Santangelo M, Althuwaynee O, Alvioli M, Ardizzone F, Bianchi C, Bornaetxea T, Brunetti MT, Bucci F, Cardinali M, Donnini M, Esposito G, Gariano SL, Grita S, Marchesini I, Melillo M, Peruccacci S, Salvati P, Yazdani M, Fiorucci F (2023) Inventory of landslides triggered by an extreme rainfall event in Marche-Umbria, Italy, on 15 September 2022. Sci Data 10(1):1–11. https://doi.org/10.1038/s41597-023-02336-3

    Article  CAS  Google Scholar 

  • Schwarz H, Michel GP, Zanandrea F, Paul LR, Salvador, CG (2023). Uso de caracterização morfométrica e geomorfológica na análise de mapeamentos de cicatrizes de escorregamentos. Revista Brasileira De Geomorfologia, 24(1). https://doi.org/10.20502/rbg.v24i1.2185

  • Seluchi ME, Chou SC (2009) Synoptic patterns associated with landslide events in the Serra do Mar. Brazil Theor Appl Climatol 98:67–77. https://doi.org/10.1007/s00704-008-0101-x

    Article  Google Scholar 

  • Seluchi M, Shou SC, Gramani M (2011) A case study of a winter heavy rainfall event over the Serra do Mar in Brazil. Geofísica Int 50:41–56

    Google Scholar 

  • Sousa IA, Bortolozo CA, Gonçalves Mendes TS, De Andrade MRM, Neto GD, Metodiev D, Pryer T, Howley N, Coelho Simões SJ, Mendes RM (2023) Development of a soil moisture forecasting method for a landslide early warning system (LEWS): pilot cases in coastal regions of Brazil. J S Am Earth Sci 131:104631. https://doi.org/10.1016/j.jsames.2023.104631

    Article  Google Scholar 

  • IPCC (2021) Summary for Policymakers. In: Climate Change (2021) The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, P Zhai, A Pirani, SL Connors, C Péan, S Berger, N Caud, Y Chen, L Goldfarb, MI Gomis, M Huang, K Reitzel, E Lonnoy, JBR Matthews, TK Maycock, T Waterfield, O Yelekçi, R Yu, and B Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.001.

  • WMO (2018) Multi-hazard Early Warning Systems: A Checklist: Outcome of the First Multi-Hazard Early Warning Conference, 22–23 May 2017, Cancún. Mexico, World Meteorological Organization (WMO), Geneva, Switzerland

    Google Scholar 

  • Wolle CM, Carvalho CS (1989) Deslizamentos em encostas na Serra do Mar-Brasil. Solos e Rochas 12:27–36

    Google Scholar 

  • World Bank (2017) Sierra Leone: Rapid damage and loss assessment of August 14th, 2017 landslides and floods in the western area, International Bank for Reconstruction and Development/International Development Associati, on, The World Bank, 1818 H Street NW Washington. DC, USA

    Google Scholar 

  • Yang SY, Jan C-D, Wang J-S (2018) Landslides triggered by typhoon Morakot in Taiwan. In: Environmental Risks, Edited by Florin-Constantin Mihai and Adrian Grozavu, IntechOpen, https://doi.org/10.5772/intechopen.76930

  • Zilli MT, Carvalho LMV, Liebmann B, Silva Dias MA (2016) A comprehensive analysis of trends in extreme precipitation over southeastern coast of Brazil. Int J Climatol. https://doi.org/10.1002/joc.4840

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Brazil’s National Institute of Science and Technology for Climate Change Phase 2 under CNPq Grant 465501/2014-1; FAPESP Grants 2014/50848-9, and the National Coordination for Higher Education and Training (CAPES) Grant 88887.136402/2017-00. The study did not include human or animal subjects. and all authors approved the study and manifested their consent in participating in the elaboration and production of this article

Funding

The Funding was provided by FAPESP, 2014/50848-9, jose marengo, CNPq, 465501/2014-1, jose marengo

Author information

Authors and Affiliations

Authors

Contributions

JAM, AC, EA, CA, RA, OM: conceptualization; funding acquisition; investigation; methodology; supervision; writing – original draft; writing – review and editing. MS, GD, VS: conceptualization; formal meteorological analysis; investigation; methodology; visualization; writing – original draft; writing – review and editing. conceptualization; formal analysis; investigation; methodology; software; visualization. MA, RS, JM, EP: geological analysis. AR: data curation; formal analysis; methodology; software; validation; visualization. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. DG: did produce an analysis and figures of rainfall data from the CEMADEN Network.

Corresponding author

Correspondence to Jose A. Marengo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 755 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marengo, J.A., Cunha, A.P., Seluchi, M.E. et al. Heavy rains and hydrogeological disasters on February 18th–19th, 2023, in the city of São Sebastião, São Paulo, Brazil: from meteorological causes to early warnings. Nat Hazards (2024). https://doi.org/10.1007/s11069-024-06558-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11069-024-06558-5

Keywords

Navigation