Skip to main content

Advertisement

Log in

Landslide susceptibility mapping using morphological and hydrological parameters in Sikkim Himalaya: frequency ratio model and geospatial technologies

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Sikkim Himalaya, a part of the North-Eastern Himalayan region, is affected by the landslides and it causes the loss of life, property, and other human infrastructure, etc. The objective of study is identification of landslides susceptibility zones of the Sikkim Himalaya, using various factors/thematic layers, such as absolute relief, relative relief, relief ratio, dissection index, hypsometric integral, slope index, drainage density, drainage frequency, drainage intensity, drainage texture, infiltration number, junction frequency, length of overland flow, ruggedness index, stream transport index, topographic wetness index, stream power index, and rainfall and all these layers are integrated in Arc GIS software using FR model. These spatial factors are generated using Alos Palsar DEM and rainfall data with the help of the Arc GIS. The FR model was utilised for the purpose of determining the weights of such all-thematic layers for the possibility of landslides occurring in regions that are susceptible to the effects of landslides. These weight of such all thematic layers are combined using the Arc GIS to create the map of landslide susceptibility zones. The map of the landslide susceptibility zones of the region has been split into five distinct categories, including ‘very high’ (13.20%), ‘high’ (19.75%), ‘moderate’ (30.81%), ‘low’ (27.14%), ‘very low’ (9.09%). For accuracy analysis of the model the area under the curve is used and is estimated as 84.6% with the help of the FR model and occurrence of previous landslides in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data and material are given in the manuscript.

References

  • Abu El-Magd SA, Orabi HO, Ali SA, Parvin F, Pham QB (2021) An integrated approach for evaluating the flash flood risk and potential erosion using the hydrologic indices and morpho-tectonic parameters. Environ Earth Sci 80(20):1–17. https://doi.org/10.1007/s12665-021-10013-0

    Article  Google Scholar 

  • Adhikari S (2020) Morphometric analysis of a drainage basin: a study of Ghatganga River, Bajhang district, Nepal. Geogr Base 7:127–144. https://doi.org/10.3126/tgb.v7i0.34280

    Article  Google Scholar 

  • Agarwal CS (1998) Study of drainage pattern through aerial data in Naugarh area of Varanasi district, U.P. J Indian Soc Remote Sens 26:169–175

    Article  Google Scholar 

  • Ahmad I, Dar MA, Teka AH, Gebre T, Gadissa E, Tolosa AT (2019) Application of hydrological indices for erosion hazard mapping using spatial analyst tool. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7614-x

    Article  Google Scholar 

  • Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S (2015) Landslide hazard zonation mapping using frequency ratio and fuzzy logic approacha case study of Lachung valley, Sikkim. Geoenviron Disasters 2(1):5. https://doi.org/10.1186/s40677-014-0009-y

    Article  Google Scholar 

  • Babu KJ, Sreekumar S, Aslam A (2016) Implication of drainage basin parameters of a tropical river basin of South India. Appl Water Sci 6(1):67–75. https://doi.org/10.1007/s13201-014-0212-8

    Article  Google Scholar 

  • Basu T, Pal S (2019) RS-GIS based morphometrical and geological multi-criteria approach to the landslide susceptibility mapping in Gish River Basin, West Bengal, India. Adv Space Res 63(3):1253–1269. https://doi.org/10.1016/j.asr.2018.10.033

    Article  Google Scholar 

  • Basu T, Pal S (2020) A GIS—based factor clustering and landslide susceptibility analysis using AHP for Gish River basin, India. Environ Dev Sustain. https://doi.org/10.1007/s10668-019-00406-4

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un modele a base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci J 24(1):43–69

    Article  Google Scholar 

  • Bhasin R, Grimstad E, Larsen JO, Dhawan AK, Singh R, Verma SK, Venkatachalam K (2002) Landslide hazards and mitigation measures at Gangtok, Sikkim Himalaya. Eng Geol 64(4):351–368. https://doi.org/10.1016/S0013-7952(01)00096-5

    Article  Google Scholar 

  • Bhatt SC, Singh R, Ansari MA, Bhatt S (2020) Quantitative morphometric and morphotectonic analysis of Pahuj catchment basin, central India. J Geol Soc India 96(5):513–520. https://doi.org/10.1007/s12594-020-1590-1

    Article  Google Scholar 

  • Bhattacharya SK (2012) Landslide disaster perception of the AILA cyclone in the Darjeeling town, West Bengal. India Int J Geomat Geosci 3(1):21–27

    Google Scholar 

  • Bhattacharya SK (2013) The study of paglajhora landslide in the Darjeeling hills, West Bengal, India. Indian J Spat Sci 40(1):21–27

    Google Scholar 

  • Binaghi E, Luzi L, Madella P, Pergalani F, Rampini A (1998) Slope instability zonation: a comparison between certainty factor and fuzzy Dempster–Shafer approaches. Nat Hazards 17(1):77–97

    Article  Google Scholar 

  • Chakrabortty R, Pal SC, Roy P, Saha A, Chowdhuri I (2022) Novel ensemble approach for landslide susceptibility index assessment in a mountainous environment of India. Geocarto Int 37(26):13311–13336. https://doi.org/10.1080/10106049.2022.2076924

    Article  Google Scholar 

  • Chamling M (2013) Landslides: a geographical review in and around PaglaJhora region of the Eastern Himalayan belt of Darjeeling, West Bengal. Indian J Res 2(8):1–3

    Google Scholar 

  • Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23

    Article  Google Scholar 

  • Chopra R, Dhiman RD, Sharma PK (2005) Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. J Indian Soc Remote Sens 33(4):531–539. https://doi.org/10.1007/BF02990738

    Article  Google Scholar 

  • Chowdhuri I, Pal SC, Janizadeh S, Saha A, Ahmadi K, Chakrabortty R, Islam ARMT, Roy P, Shit M (2022a) Application of novel deep boosting framework-based earthquake induced landslide hazards prediction approach in Sikkim Himalaya. Geocarto Int 37(26):12509–12535. https://doi.org/10.1080/10106049.2022.2068675

    Article  Google Scholar 

  • Chowdhuri I, Pal SC, Saha A, Roy P, Chakrabortty R, Shit M (2022b) Application of novel framework approach for assessing rainfall induced future landslide hazard to world heritage sites in Indo-Nepal-Bhutan Himalayan region. Geocarto Int 37(27):17742–17776. https://doi.org/10.1080/10106049.2022.2134464

    Article  Google Scholar 

  • Claessens L, Temme AJAM, Schoorl JM (2013) Mass-movement causes: changes in slope angle. Treatise Geomorphol. https://doi.org/10.1016/B978-0-12-374739-6.00167-6

    Article  Google Scholar 

  • Clarke JI (1996) Morphometry from maps. In: Essays in geomorphology. Elsevier Publication. Co., New York, pp 235–274

  • Cox RT (1994) Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geol Soc Am Bull 106(5):571–581. https://doi.org/10.1130/0016-7606(1994)106%3c0571:AODBSA%3e2.3.CO;2

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391

    Article  Google Scholar 

  • Das G, Lepcha K (2019) Application of logistic regression (LR) and frequency ratio (FR) models for landslide susceptibility mapping in Relli Khola river basin of Darjeeling Himalaya, India. SN Appl Sci. https://doi.org/10.1007/s42452-019-1499-8

    Article  Google Scholar 

  • Das AK, Mukherjee S (2005) Drainage morphometry using satellite data and GIS in Raigad district, Maharashtra. J Geol Soc India 65:577–586

    Google Scholar 

  • Deolia R, Pande A (2014) Spatial distribution of dissection index (erosion intensity) versus geomorphological environment in Parkha Watershed, Central Himalaya. Ind J Geogr Environ 13:11

    Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65(1):135–165. https://doi.org/10.1007/s11069-012-0347-6

  • Donnarumma A, Revellino P, Grelle G, Guadagno FM (2013) Landslide science and practice. Landslide Sci Pract 1:425–433. https://doi.org/10.1007/978-3-642-31325-7

    Article  Google Scholar 

  • Dou J, Yamagishi H, Pourghasemi HR, Yunus AP, Song X, Xu Y, Zhu Z (2015) An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island. Jpn Nat Hazards 78:1749–1776

    Article  Google Scholar 

  • Elewa HH, Ramadan EM, Nosair AM (2016) Spatial-based hydro-morphometric watershed modeling for the assessment of flooding potentialities. Environ Earth Sci 75(906):927. https://doi.org/10.1007/s12665-016-5692-4

    Article  Google Scholar 

  • Faniran A (1968) The index of drainage intensity–a provisional new drainage factor. Aust J Sci 31:328–330

    Google Scholar 

  • Farhan Y (2017) Morphometric Assessment of Wadi Wala Watershed, Southern Jordan using ASTER (DEM) and GIS. J Geogr Inf Syst 09(02):158–190. https://doi.org/10.4236/jgis.2017.92011

    Article  Google Scholar 

  • Ghosh D (2015) Landslide susceptibility analysis from morphometric parameter analysis of RiyongKhola basin, West Sikkim, India: a geospatial approach. Int J Geol Earth Environ Sci 5(54):65

    Google Scholar 

  • Gupta RP (2003) Remote sensing geology, 2nd edn. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Gupta RP, Joshi BC (1990) Landslide hazard zonation using the GIS approach—a case study from the Ramganga catchment, Himalayas. Eng Geol 28:119–131

    Article  Google Scholar 

  • Gupta N, Pal SK, Das J (2022) GIS-based evolution and comparisons of landslide susceptibility mapping of the East Sikkim Himalaya. Spat Sci 3:359–384. https://doi.org/10.1080/19475683.2022.2040587

    Article  Google Scholar 

  • Horton RE (1932) Drainage basin characteristics. Am Geophys Union Trans 13:350–361

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Ilanloo M (2011) A comparative study of fuzzy logic approach for landslide susceptibility mapping using GIS: an experience of Karaj dam basin in Iran. Procedia Soc Behav Sci 19:668–676. https://doi.org/10.1016/j.sbspro.2011.05.184

    Article  Google Scholar 

  • Islam ARMT, Saha A, Ghose B, Pal SC, Chowdhuri I, Mallick J (2022) Landslide susceptibility modeling in a complex mountainous region of Sikkim Himalaya using new hybrid data mining approach. Geocarto Int 37(25):9021–9046. https://doi.org/10.1080/10106049.2021.2009920

    Article  Google Scholar 

  • Kalantar B, Pradhan B, Amir Naghibi S, Motevalli A, Mansor S (2018) Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat Nat Haz Risk 9(1):49–69. https://doi.org/10.1080/19475705.2017.1407368

    Article  Google Scholar 

  • Kale VS, Gupta A (2001) Introduction to geomorphology. Orient Longman Ltd., India, pp 82–101

    Google Scholar 

  • Kannaujiya S, Chattoraj SL, Jayalath D, Champati ray PK, Bajaj K, Podali S, Bisht MP (2019) Integration of satellite remote sensing and geophysical techniques (electrical resistivity tomography and ground penetrating radar) for landslide characterization at Kunjethi (Kalimath), Garhwal Himalaya, India. Nat Hazards 97(3):1191–1208. https://doi.org/10.1007/s11069-019-03695-0

    Article  Google Scholar 

  • Kaur H, Gupta S, Parkash S, Thapa R, Gupta A, Khanal GC (2019) Evaluation of landslide susceptibility in a hill city of Sikkim Himalaya with the perspective of hybrid modelling techniques. Spat Sci 25(2):113–132. https://doi.org/10.1080/19475683.2019.1575906

    Article  Google Scholar 

  • Kayastha P, Dhital MR, Smedt FD (2013) Evaluation and comparison of GIS based landslide susceptibility mapping procedures in Kulekhani watershed Nepal. J Geol Soc India 81(2):219–231. https://doi.org/10.1007/s12594-013-0025-7

    Article  Google Scholar 

  • Kumar V, Gupta V, Jamir I (2018) Hazard evaluation of progressive Pawari landslide zone, Satluj valley, Himachal Pradesh. India Nat Hazards 93(2):1029–1047. https://doi.org/10.1007/s11069-018-3339-3

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Rem Sens 26(7):1477–1491

    Article  Google Scholar 

  • Lee S (2014) Geological application of geographic information system. Korea Inst Geosci Min Resour 9–15:109–118

    Google Scholar 

  • Lin LL, Wang CW, Chiu CL, Ko YC (2011) A study of rationality of slopeland use in view of land preservation. Paddy Water Environ 9:257–266

    Article  Google Scholar 

  • Long NT, De Smedt F (2018) Analysis and mapping of rainfall-induced landslide susceptibility in A luoi district, thua thien hue province. Vietnam Water (switzerland). https://doi.org/10.3390/w11010051

    Article  Google Scholar 

  • Mahadevaswamy G, Nagaraju D, Siddalingamurthy S, Lakshmamma MSL, Nagesh PC, Rao K (2011) Morphometric analysis of Nanjangud taluk, Mysore district, Karnataka, India, using GIS techniques. Int J Geomat Geosci 1:179–187

    Google Scholar 

  • Mandal S, Maiti R (2013) Assessing the triggering rainfall-induced landslip events in the Shivkhola Watershed of Darjeeling Himalaya, West Bengal. Eur J Geogr 4(3):21–33

    Google Scholar 

  • Mandal B, Mandal S (2016) Assessment of mountain slope instability in the Lish River basin of Eastern Darjeeling Himalaya using frequency ratio model (FRM). Model Earth Syst Environ 2(3):1–14. https://doi.org/10.1007/s40808-016-0169-8

    Article  Google Scholar 

  • Melton MA (1957) An analysis of the relation among elements of climate, surface properties, and geomorphology. Department of Geology, Columbia University, New York

    Book  Google Scholar 

  • Mersha T, Meten M (2020) GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, Northwestern Ethiopia. Geoenviron Disasters 7:20. https://doi.org/10.1186/s40677-020-00155-x

    Article  Google Scholar 

  • Mezughi TH, Akhir JM, Rafek AG, Abdullah I (2011) Landslide susceptibility assessment using frequency ratio model applied to an area along the E-W Highway (Gerik-Jeli). Am J Environ Sci 7:43–50

    Article  Google Scholar 

  • Miller VC (1953) A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Varginia and Tennessee. J Geol 1:112–113

    Google Scholar 

  • Mirdda HA, Bera S, Siddiqui MA, Singh B (2020) Analysis of bi-variate statistical and multi-criteria decision-making models in landslide susceptibility mapping in lower Mandakini Valley, India. GeoJournal 85(3):681–701. https://doi.org/10.1007/s10708-019-09991-3

    Article  Google Scholar 

  • Mishra AK, Rai SC (2020) Geo-hydrological inferences through morphometric aspects of the Himalayan glacial-fed river: a case study of the Madhyamaheshwar River basin. Arab J Geosci 13(13):2. https://doi.org/10.1007/s12517-020-05571-9

    Article  CAS  Google Scholar 

  • Moazzam MFU, Vansarochana A, Boonyanuphap J, Choosumrong S, Rahman G, Djueyep GP (2020) Spatio-statistical comparative approaches for landslide susceptibility modeling: case of Mae Phun, Uttaradit Province, Thailand. SN Appl Sci 2(3):1–15. https://doi.org/10.1007/s42452-020-2106-8

    Article  Google Scholar 

  • Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. J Asian Earth Sci 61:221–236

    Article  Google Scholar 

  • Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: simplified method of esti- mation. J Soil Water Conserv 47(5):423–428

    Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30. https://doi.org/10.1002/hyp.3360050103

    Article  Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57(2):61. https://doi.org/10.2136/sssaj1993.03615995005700020026x

    Article  Google Scholar 

  • Mueller JE (1968) An introduction to the hydraulic and topographic sinuosity indexes. Ann Assoc Am Geogr 58:371–385

    Article  Google Scholar 

  • Nakileza BR, Nedala S (2020) Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Geoenviron Disasters 7:1–13

    Article  Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic kelkit valley (eastern black sea region of Turkey). Geomorphology 94:401–418

    Article  Google Scholar 

  • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey, 2010. Math Probl Eng. https://doi.org/10.1155/2010/901095

    Article  Google Scholar 

  • Oguchi T (1997) Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surf Process Landf 22:107–120

    Article  Google Scholar 

  • Pal SC, Chowdhuri I (2019) GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India. SN Appl Sci 1(5):1–25. https://doi.org/10.1007/s42452-019-0422-7

    Article  Google Scholar 

  • Pandey VK, Sharma KK, Bandooni SK (2018) Characteristics of large landslides and application of frequency ratio model for susceptibility assessment, lower Jalal catchment (Himachal Pradesh). Int J Res Geogr 4(1):17–26. https://doi.org/10.20431/2454-8685.0401004

    Article  Google Scholar 

  • Pawluszek K, Borkowski A (2017) Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland. Nat Hazards 86(2):919–952

    Article  Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012a) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood basin, Iran. CATENA 97:71–84

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012b) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed. Iran Nat Hazards 63(2):965–996

    Article  Google Scholar 

  • Prabhakaran A, Jawahar Raj N (2018) Drainage morphometric analysis for assessing form and processes of the watersheds of Pachamalai hills and its adjoinings, Central Tamil Nadu, India. Appl Water Sci 8(1):1–19. https://doi.org/10.1007/s13201-018-0646-5

    Article  Google Scholar 

  • Pradhan B, Sezer EA, Gokceoglu C, Buchroithner MF (2010) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highlands, Malaysia). Geosci Remote Sens IEEE Trans 48(12):4164–4177

    Article  Google Scholar 

  • Qiu H, Cui P, Regmi AD, Hu S, Zhang Y, He Y (2018) Landslide distribution and size versus relative relief (Shaanxi Province, China). Bull Eng Geol Env 77(4):1331–1342. https://doi.org/10.1007/s10064-017-1121-5

    Article  Google Scholar 

  • Rai PK, Chandel RS, Mishra VN, Singh P (2018) Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Appl Water Sci 8(1):1–16. https://doi.org/10.1007/s13201-018-0660-7

    Article  Google Scholar 

  • Rawat MS (2012) Statistical analysis of Landslide in South district, Sikkim, India: using remote sensing and GIS. IOSR J Environ Sci Toxicol Food Technol 2(3):47–61. https://doi.org/10.9790/2402-0234761

    Article  Google Scholar 

  • Rawat MS, Dobhal R, Joshi V, Sundriyal Y (2017) Landslide hazard zonation study in Eastern Indian Himalayan Region. Int J Georesources Environ 3(1):35–46. https://doi.org/10.15273/ijge.2017.01.005

    Article  Google Scholar 

  • Reddy GPO, Maji AK, Gajbhiye KS (2002) GIS for morphometric analysis of drainage basins. GIS India 11(4):9–14

    Google Scholar 

  • Rekha VB, George AV, Rita M (2011) Morphometric analysis and micro-watershed prioritization of Peruvanthanam sub-watershed, the Manimala River basin, Kerala, South India. Environ Res Eng Manage 3(57):6–14

    Google Scholar 

  • Rózycka M, Migoń P, Michniewicz A (2017) Topographic wetness index and terrain ruggedness index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland. Z Fur Geomorphol 61:61–80. https://doi.org/10.1127/zfg_suppl/2016/0328

    Article  Google Scholar 

  • Saha A, Pal SC, Santosh M, Janizadeh S, Chowdhuri I, Norouzi A, Roy P, Chakrabortty R (2021) Modelling multi-hazard threats to cultural heritage sites and environmental sustainability: the present and future scenarios. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.128713

    Article  Google Scholar 

  • Saha A, Pal SC, Chowdhuri I, Chakrabortty R, Roy P (2022) Understanding the scale effects of topographical variables on landslide susceptibility mapping in Sikkim Himalaya using deep learning approaches. Geocarto Int 37(27):17826–17852. https://doi.org/10.1080/10106049.2022.2136255

    Article  Google Scholar 

  • Sangchini EK, Emami SN, Tahmasebipour N, Pourghasemi HR, Naghibi SA, Arami SA, Pradhan B (2016) Assessment and comparison of combined bivariate and AHP models with logistic regression for landslide susceptibility mapping in the Chaharmahal-e-Bakhtiari Province, Iran. Arab J Geosci. https://doi.org/10.1007/s12517-015-2258-9

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Patra AK, Kumar P (2006) GIS based landslide susceptibility mapping—a case study in Indian Himalaya. Universal Academy Press Inc., Tokyo, pp 617–624

    Google Scholar 

  • Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646

    Article  Google Scholar 

  • Skilodimou HD, Bathrellos GD, Koskeridou E, Soukis K, Rozos D (2018) Physical and anthropogenic factors related to landslide activity in the northern Peloponnese, Greece. Land. https://doi.org/10.3390/land7030085

    Article  Google Scholar 

  • Smith KG (1950) Standards for grading texture of erosional topography. Am J Sci 248:655–668

    Article  Google Scholar 

  • Soni S (2017) Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Appl Water Sci 7(5):2089–2102. https://doi.org/10.1007/s13201-016-0395-2

    Article  Google Scholar 

  • Soni SK, Tripathi S, Maurya AK (2013) GIS based morphometric characterization of mini-watershed—Rachhar Nala of Anuppur District Madhya Pradesh. Int J Adv Technol Eng Res 3(3):32–38

    Google Scholar 

  • Sonker I, Tripathi JN (2022) Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio method in Sikkim Himalaya. Quat Sci Adv 8:100067. https://doi.org/10.1016/j.qsa.2022.100067

    Article  Google Scholar 

  • Sonker I, Tripathi JN, Singh AK (2021) Landslide susceptibility zonation using geospatial technique and analytical hierarchy process in Sikkim Himalaya. Quat Sci Adv 4:100039. https://doi.org/10.1016/j.qsa.2021.100039

    Article  Google Scholar 

  • Sonker I, Tripathi JN, Singh AK (2023) Morphomertic and neotectonic study of Upper Teesta River basin, Sikkim Himalaya using geospatial techniques. J Appl Geophys 212:104978. https://doi.org/10.1016/j.jappgeo.2023.104978

    Article  Google Scholar 

  • Sörensen R, Zinko U, Seibert J (2006) On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci 10:101–112

    Article  Google Scholar 

  • Sreedevi PD, Sreekanth PD, Khan HH, Ahmed S (2013) Drainage morphometry and its influence on hydrology in a semi-arid region: using SRTM data and GIS. Environ Earth Sci 70(2):839–848

    Article  Google Scholar 

  • Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63:1117–1142

    Article  Google Scholar 

  • Strahler AN (1956) Quantitative slope, analysis. Bull Geol Soc Am 67:571–596

    Article  Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. In: Handbook of applied hydrology. McGraw-Hill, New York, pp 439–476

  • Sur U, Singh P, Meena SR (2020) Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data. Geomat Nat Hazards Risk 11(1):2176–2209. https://doi.org/10.1080/19475705.2020.1836038

    Article  Google Scholar 

  • Taloor AK, Adimalla N, Goswami A (2021a) Remote sensing and GIS applications in geoscience. Appl Comput Geosci 11:1–3. https://doi.org/10.1016/j.acags.2021.100065

    Article  Google Scholar 

  • Taloor AK, Joshi MN, Kotlia BS, Alam A, Kothyari GC, Kandregula RS, Singh AK, Dumka RK (2021b) Tectonic imprints of landscape evolution in the Bhilangana and Mandakini basin, Garhwal Himalaya, India: a geospatial approach. Quat Int 575–576:21–36. https://doi.org/10.1016/j.quaint.2020.07.021

    Article  Google Scholar 

  • Taloor AK, Kothyari G, Goswami A (2021c) Remote sensing and GIS applications in quaternary science. Quat Int 574(575):1–4. https://doi.org/10.1016/j.quaint.2021.02.001

    Article  Google Scholar 

  • Taloor AK, Kothyari G, Goswami A, Mishra A (2022) Geospatial technology applications in quaternary science. Quat Sci Adv 7:100059. https://doi.org/10.1016/j.qsa.2022.100059

    Article  Google Scholar 

  • Tripathi JN, Sonker I, Tripathi S, Singh AK (2022) Climate change traces on Lhonak Glacier using geospatial tools. Quat Sci Adv 8:100065. https://doi.org/10.1016/j.qsa.2022.100065

    Article  Google Scholar 

  • Van Westen CJ (1994) GIS in landslide hazard zonation: a review, with examples from the Andes of Colombia. Taylor & Francis, Basingstoke, pp 135–165

    Google Scholar 

  • Velayudham J, Kannaujiya S, Sarkar T, Taloor AK, Bisht MP, Chawla S, Pal SK (2021) Comprehensive study on evaluation of Kaliasaur Landslide attributes in Garhwal Himalaya by the execution of geospatial, geotechnical and geophysical methods. Quat Sci Adv 3:100025. https://doi.org/10.1016/j.qsa.2021.100025

    Article  Google Scholar 

  • Wu Y, Li W, Wang Q, Liu Q, Yang D, Xing M, Pei Y, Yan S (2016) Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arabian J Geosci 9(2):1–16. https://doi.org/10.1007/s12517-015-2112-0

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85(3):274–287

    Article  Google Scholar 

  • Yangchan J, Jain AK, Tiwari AK, Sood A (2015) IJSER 61015-1023 Vinutha D N and Janardhana M R 2014 IJIRSET, pp 5516–524

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35:1125–1138

    Article  Google Scholar 

  • Zhao C, Lu Z (2018) Remote sensing of landslides-a review. Rem Sens 10(2):8–13

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the anonymous reviewer for their invaluable comments, which significantly enhanced the quality and readability of the manuscript. They also appreciate the cooperation and valuable suggestions provided by the editor, whose support was instrumental in improving the work. Additionally, Swarnim and I.S. extend their heartfelt thanks to the University Grants Commission (U.G.C.), New Delhi, for awarding them Junior and Senior Research Fellowships, respectively.

Funding

Irjesh Sonker and Swarnim thankfully acknowledge University Grants Commission (U.G.C.), New Delhi, for Junior and Senior Research Fellowship awarded to them, respectively.

Author information

Authors and Affiliations

Authors

Contributions

JNT: Conceptualized the problem, resources and supervision; IS and S: methodology and formal analysis, original draft preparation. IS, S, JNT: writing—discussion, review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jayant Nath Tripathi.

Ethics declarations

Competing interests

This is to declare by all the authors that no financial and personal relationships with other people or organizations have been taken and there is no conflict of interest with other people or organizations.

Ethical responsibilities of authors

Authors declare that they follow the ethical responsibility of the Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonker, I., Tripathi, J.N. & Swarnim Landslide susceptibility mapping using morphological and hydrological parameters in Sikkim Himalaya: frequency ratio model and geospatial technologies. Nat Hazards 120, 6797–6832 (2024). https://doi.org/10.1007/s11069-024-06491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-024-06491-7

Keywords

Navigation