Skip to main content

Advertisement

Log in

Estimating landslide hazard distribution based on machine learning and bivariate statistics in Utmah Region, Yemen

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Landslides represent significant risks to human activity, leading to infrastructure damage and loss of life. This study focuses on assessing landslide hazards in Utmah Region, Yemen. The evaluation involves comparing the effectiveness of the relative frequency ratio model with five machine learning algorithms (MLAs) for hazard mapping. Field surveys, high-resolution satellite imagery, and aerial photography were utilized in the study. The inventory map was generated after identifying and mapping 100 landslides. The inventory was then divided randomly into a training dataset (70 landslides) and a validation dataset (30 landslides), with an equal number of non-landslide pixels. Eleven additional landslide conditioning factors were collected from various sources, and the frequency ratio (FR) approach was employed to identify the most crucial variables for modeling. The models were rigorously tested and assessed using statistical metrics, including the Friedman and Wilcoxon signed-rank tests, as well as the area under the receiver operating characteristics (AUROC) curve. The findings based on the training and validation datasets revealed that the RF algorithm (AUROC, 0.992) outperformed the other models in generating hazard maps. The XGBoost model (AUROC, 0.991), NB model (AUROC, 0.970), ANN model (AUROC, 0.922), KNN model (AUROC, 0.877), and FR (AUROC, 0.674) were found to be less effective. Consequently, the study highlights that the Random forest (RF) model shows promise as an effective approach for predicting landslides spatially on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abella EAC, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantánamo. Cuba Geomorphol 94:453–466

    Article  ADS  Google Scholar 

  • Abraham MT, Satyam N, Lokesh R et al (2021) Factors affecting landslide susceptibility mapping: Assessing the influence of different machine learning approaches, sampling strategies and data splitting. Land 10:989

    Article  Google Scholar 

  • Achour Y, Boumezbeur A, Hadji R et al (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci 10:1–16

    Article  Google Scholar 

  • Adams RD, Barazangi M (1984) Seismotectonics and seismology in the Arab region: a brief summary and future plans. Bull Seismol Soc Am 74:1011–1030

    Google Scholar 

  • Ahmed B, Dewan A (2017) Application of bivariate and multivariate statistical techniques in landslide susceptibility modeling in Chittagong City Corporation. Bangladesh Remote Sens 9:304

    Article  ADS  Google Scholar 

  • Ahmed MF, Rogers JD, Ismail EH (2014) A regional level preliminary landslide susceptibility study of the upper Indus river basin. Eur J Remote Sens 47:343–373

    Article  Google Scholar 

  • Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54:1127–1143

    Article  ADS  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Ali S, Biermanns P, Haider R, Reicherter K (2019) Landslide susceptibility mapping by using a geographic information system (GIS) along the China-Pakistan Economic Corridor (Karakoram Highway), Pakistan. Nat Hazards Earth Syst Sci 19:999–1022

    Article  ADS  Google Scholar 

  • Alsahaf A, Azzopardi G, Ducro B, et al (2018) Predicting slaughter weight in pigs with regression tree ensembles. In: APPIS. pp 1–9

  • Al-Saud MM (2008) Seismic characteristics and kinematic models of Makkah and central Red Sea regions. Arab J Geosci 1:49–61

    Article  Google Scholar 

  • Al-Sinawi S, Al-Aidarus A (1999) Seismicity of Yemen. Obadi Studies & Pub Center, USA

    Google Scholar 

  • Althuwaynee OF, Pradhan B, Lee S (2012) Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci 44:120–135

    Article  ADS  Google Scholar 

  • Alvioli M, Baum RL (2016) Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ Model Softw 81:122–135

    Article  Google Scholar 

  • Anagnostopoulos GG, Burlando P (2012) An Object-oriented computational framework for the simulation of variably saturated flow in soils, using a reduced complexity model. Environ Model Softw 38:191–202

    Article  Google Scholar 

  • Anagnostopoulos GG, Fatichi S, Burlando P (2015) An advanced process-based distributed model for the investigation of rainfall-induced landslides: the effect of process representation and boundary conditions. Water Resour Res 51:7501–7523

    Article  ADS  Google Scholar 

  • Arabameri A, Rezaei K, Pourghasemi HR et al (2018) GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. Environ Earth Sci 77:1–22

    Article  Google Scholar 

  • Aronson JE, Liang T-P, MacCarthy RV (2005) Decision support systems and intelligent systems. Pearson Prentice-Hall Upper Saddle River, NJ, USA

    Google Scholar 

  • Basharat M, Shah HR, Hameed N (2016) Landslide susceptibility mapping using GIS and weighted overlay method: a case study from NW Himalayas, Pakistan. Arab J Geosci 9:1–19

    Article  Google Scholar 

  • Bathrellos GD, Kalivas DP, Skilodimou HD (2009) GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estud Geol 65:49–65

    Article  Google Scholar 

  • Bathrellos GD, Skilodimou HD, Chousianitis K et al (2017) Suitability estimation for urban development using multi-hazard assessment map. Sci Total Environ 575:119–134

    Article  ADS  CAS  PubMed  Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2008) TRIGRS: a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0. US Geological Survey Reston, VA, USA

    Google Scholar 

  • Biçer ÇT, Ercanoglu M (2020) A semi-quantitative landslide risk assessment of central Kahramanmaraş City in the Eastern Mediterranean region of Turkey. Arab J Geosci 13:1–26

    Article  Google Scholar 

  • Bourenane H, Guettouche MS, Bouhadad Y, Braham M (2016) Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arab J Geosci 9:1–24

    Article  Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bröcker J, Smith LA (2007) Increasing the reliability of reliability diagrams. Weather Forecast 22:651–661

    Article  ADS  Google Scholar 

  • Bui DT, Pradhan B, Revhaug I, Tran CT (2014) A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam. In: Srivastava PK, Mukherjee S, Gupta M, Islam T (eds) Remote sensing applications in environmental research. Springer International Publishing, Cham, pp 87–111. https://doi.org/10.1007/978-3-319-05906-8_6

    Chapter  Google Scholar 

  • Burns WJ, Madin I, Mickelson KA (2012) Protocol for shallow-landslide susceptibility mapping. Oregon Department of Geology and Mineral Industries Portland, OR, USA

    Google Scholar 

  • Camilo DC, Lombardo L, Mai PM et al (2017) Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized generalized linear model. Environ Model Softw 97:145–156

    Article  Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962

    Article  Google Scholar 

  • Chang K-T, Merghadi A, Yunus AP et al (2019) Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Sci Rep 9:1–21

    Google Scholar 

  • Chen Y-R, Chen J-W, Hsieh S-C, Ni P-N (2009) The application of remote sensing technology to the interpretation of land use for rainfall-induced landslides based on genetic algorithms and artificial neural networks. IEEE J Sel Top Appl Earth Obs Remote Sens 2:87–95

    Article  ADS  Google Scholar 

  • Chen W, Xie X, Peng J et al (2017a) GIS-based landslide susceptibility modeling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models. Geomatics, Nat Hazards Risk 8:950–973

    Article  Google Scholar 

  • Chen W, Xie X, Wang J et al (2017b) A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151:147–160

    Article  Google Scholar 

  • Chen W, Li H, Hou E et al (2018a) GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci Total Environ 634:853–867

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chen W, Pourghasemi HR, Naghibi SA (2018b) A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bull Eng Geol Environ 77:647–664

    Article  CAS  Google Scholar 

  • Chen W, Shahabi H, Zhang S et al (2018c) Landslide susceptibility modeling based on gis and novel bagging-based kernel logistic regression. Appl Sci 8:2540

    Article  Google Scholar 

  • Chen W, Yan X, Zhao Z et al (2019) Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China). Bull Eng Geol Environ 78:247–266

    Article  Google Scholar 

  • Chen W, Chen Y, Tsangaratos P et al (2020b) Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments. Remote Sens 12:3854

    Article  ADS  Google Scholar 

  • Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. pp 785–794

  • Chen J-S, Huang H-Y, Hsu C-Y (2020a) A kNN based position prediction method for SNS places. In: Asian conference on intelligent information and database systems. Springer, pp 266–273

  • Chiesa S, La Volpe L, Lirer L, Orsi G (1983) Geology of the Dhamār-Radā’Volcanic Field, Yemen Arab Republic. Neues Jahrb Für Geol Und Paläontologie-Monatshefte 1983:481–494

    Article  Google Scholar 

  • Chunxia Z, Linlin G, Dongchen E, Hsingchung C (2005) A case study of using external DEM in InSAR DEM generation. Geo-Spatial Inf Sci 8:14–18

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P et al (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263

    Google Scholar 

  • Costanzo D, Rotigliano E, Irigaray C et al (2012) Factors selection in landslide susceptibility modeling on large scale following the gis matrix method: application to the river Beiro basin (Spain). Nat Hazards Earth Syst Sci 12:327–340

    Article  ADS  Google Scholar 

  • Das I, Stein A, Kerle N, Dadhwal VK (2012) Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models. Geomorphology 179:116–125

    Article  ADS  Google Scholar 

  • Davison IAN, Al-Kadasi M, Al-Khirbash S et al (1994) Geological evolution of the southeastern Red Sea Rift margin, Republic of Yemen. Geol Soc Am Bull 106:1474–1493

    Article  Google Scholar 

  • Demir G, Aytekin M, Akgün A et al (2013) A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards 65:1481–1506

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR et al (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65:135–165

    Article  Google Scholar 

  • Dou J, Yunus AP, Bui DT et al (2019) Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ 662:332–346

    Article  ADS  CAS  PubMed  Google Scholar 

  • Dou J, Yunus AP, Bui DT et al (2020) Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 17:641–658

    Article  Google Scholar 

  • Elkadiri R, Sultan M, Youssef AM et al (2014) A remote sensing-based approach for debris-flow susceptibility assessment using artificial neural networks and logistic regression modeling. IEEE J Sel Top Appl Earth Obs Remote Sens 7:4818–4835

    Article  ADS  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730

    Article  Google Scholar 

  • Fang Z, Wang Y, Peng L, Hong H (2020) Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput Geosci 139:104470

    Article  Google Scholar 

  • Fang Z, Wang Y, Duan G et al (2021a) Landslide susceptibility mapping using rotation forest ensemble technique with different decision trees in the Three Gorges Reservoir area. China Remote Sens 13:238

    Article  ADS  Google Scholar 

  • Fang Z, Wang Y, Peng L, Hong H (2021b) A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int J Geogr Inf Sci 35:321–347

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

    Article  ADS  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102(3–4):85–98. https://doi.org/10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Garosi Y, Sheklabadi M, Conoscenti C et al (2019) Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci Total Environ 664:1117–1132

    Article  ADS  CAS  PubMed  Google Scholar 

  • Glade T, Crozier MJ (2005) The nature of landslide hazard impact. In: Glade T, Anderson M, Crozier MJ (eds) Landslide Hazard and Risk. Wiley, pp 41–74. https://doi.org/10.1002/9780470012659.ch2

    Chapter  Google Scholar 

  • Gong W, Hu M, Zhang Y et al (2022) GIS-based landslide susceptibility mapping using ensemble methods for Fengjie County in the Three Gorges Reservoir Region, China. Int J Environ Sci Technol 19:7803–7820

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  ADS  Google Scholar 

  • Hansen A, Franks CAM, Kirk PA, Brimicombe AJ, Tung F (1995) Application of GIS to hazard assessment, with particular reference to landslides in Hong Kong. In: Carrara A, Guzzetti F (eds) Geographical Information Systems in Assessing Natural Hazards. Springer Netherlands, Dordrecht, pp 273–298. https://doi.org/10.1007/978-94-015-8404-3_14

    Chapter  Google Scholar 

  • Hansen A (1984) Landslide hazard analysis. Slope Instab pp 523–602

  • Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the international conference on Neural Networks. IEEE Press New York, NY, USA, pp 11–14

  • Hong H, Liu J, Bui DT et al (2018) Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). CATENA 163:399–413

    Article  Google Scholar 

  • Hu Q, Zhou Y, Wang S, Wang F (2020a) Machine learning and fractal theory models for landslide susceptibility mapping: case study from the Jinsha River Basin. Geomorphology 351:106975

    Article  Google Scholar 

  • Hu X, Zhang H, Mei H et al (2020b) Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest. China Appl Sci 10:4016

    Article  CAS  Google Scholar 

  • Hu X, Mei H, Zhang H et al (2021) Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China. Nat Hazards 105:1663–1689

    Article  Google Scholar 

  • Humbert M (1977) La cartographie en France des zones exposées à des risques lies aux mouvements du sol—cartes ZERMOS. Bull Int Assoc Eng Geol L’association Int Géologie L’ingénieur 16:80–82

    Article  Google Scholar 

  • Jaafari A, Zenner EK, Pham BT (2018) Wildfire spatial pattern analysis in the Zagros Mountains, Iran: a comparative study of decision tree based classifiers. Ecol Inform 43:200–211

    Article  Google Scholar 

  • Jiang P, Zeng Z, Chen J, Huang T (2014) Generalized regression neural networks with K-fold cross-validation for displacement of landslide forecasting. In: Zeng Z, Li Y, King I (eds) Advances in Neural Networks – ISNN 2014: 11th International Symposium on Neural Networks, ISNN 2014, Hong Kong and Macao, China, November 28- December 1, 2014. Proceedings. Springer International Publishing, Cham, pp 533–541. https://doi.org/10.1007/978-3-319-12436-0_59

    Chapter  Google Scholar 

  • Kadavi PR, Lee C-W, Lee S (2018) Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens 10:1252

    Article  ADS  Google Scholar 

  • Kala R (2012) Multi-robot path planning using co-evolutionary genetic programming. Expert Syst Appl 39:3817–3831

    Article  Google Scholar 

  • Kamp U, Growley BJ, Khattak GA, Owen LA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101:631–642

    Article  ADS  Google Scholar 

  • Kantardzic M (2011) Data mining: concepts, models, methods, and algorithms. John Wiley & Sons, USA

    Book  Google Scholar 

  • Kanwal S, Atif S, Shafiq M (2017) GIS based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins. Geomatics, Nat Hazards Risk 8:348–366

    Article  Google Scholar 

  • Karpouza M, Chousianitis K, Bathrellos GD et al (2021) Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis. Nat Hazards 109:637–669

    Article  Google Scholar 

  • Kavzoglu T, Colkesen I, Sahin EK (2019) Machine learning techniques in landslide susceptibility mapping: a survey and a case study. In: Pradhan SP, Vishal V, Singh TN (eds) Landslides: theory, practice and modeling. Springer International Publishing, Cham, pp 283–301. https://doi.org/10.1007/978-3-319-77377-3_13

    Chapter  Google Scholar 

  • Kia MB, Pirasteh S, Pradhan B et al (2012) An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci 67:251–264

    Article  ADS  Google Scholar 

  • Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74:17–28

    Article  ADS  Google Scholar 

  • Koukis G, Ziourkas C (1991) Slope instability phenomena in Greece: a statistical analysis. Bull Int Assoc Eng Geol L’association Int Géologie L’ingénieur 43:47–60

    Article  Google Scholar 

  • Kumar A, Sharma RK, Bansal VK (2019) GIS-based comparative study of information value and frequency ratio method for landslide hazard zonation in a part of mid-Himalaya in Himachal Pradesh. Innov Infrastruct Solut 4:1–17

    Article  Google Scholar 

  • Kutlug Sahin E, Colkesen I (2021) Performance analysis of advanced decision tree-based ensemble learning algorithms for landslide susceptibility mapping. Geocarto Int 36:1253–1275

    Article  ADS  Google Scholar 

  • Lee S, Kim J-C, Jung H-S et al (2017) Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Nat Hazards Risk 8:1185–1203

    Article  Google Scholar 

  • Leventhal AR, Kotze GP (2008) Landslide susceptibility and hazard mapping in Australia for land-use planning—with reference to challenges in metropolitan suburbia. Eng Geol 102:238–250

    Article  Google Scholar 

  • Li R, Wang N, Kutlug Sahin E, Colkesen I (2019) Landslide susceptibility mapping for the Muchuan county (China): a comparison between bivariate statistical models (woe, ebf, and ioe) and their ensembles with logistic regression. Symmetry 11:762

    Article  ADS  CAS  Google Scholar 

  • Liu Y, Zhang W, Zhang Z et al (2021) Risk factor detection and landslide susceptibility mapping using geo-detector and random forest models: the 2018 Hokkaido Eastern Iburi Earthquake. Remote Sens 13:1157

    Article  ADS  Google Scholar 

  • Liu R, Yang X, Xu C et al (2022) Comparative study of convolutional neural network and conventional machine learning methods for landslide susceptibility mapping. Remote Sens 14:321

    Article  ADS  CAS  Google Scholar 

  • Malek Ž, Zumpano V, Schröter D, Glade T, Balteanu D, Micu M (2015) Scenarios of land cover change and landslide susceptibility: an example from the buzau subcarpathians, romania. In: Lollino G, Manconi A, Guzzetti F, Culshaw M, Bobrowsky P, Luino F (eds) Engineering geology for society and territory: urban geology, sustainable planning and landscape exploitation. Springer International Publishing, Cham, pp 743–746. https://doi.org/10.1007/978-3-319-09048-1_144

    Chapter  Google Scholar 

  • Marjanovic M, Bajat B, Kovacevic M (2009) Landslide susceptibility assessment with machine learning algorithms. In: 2009 international conference on intelligent networking and collaborative systems. IEEE, pp 273–278

  • Meng Q, Miao F, Zhen J et al (2016) GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China. Bull Eng Geol Environ 75:923–944

    Article  Google Scholar 

  • Merghadi A, Yunus AP, Dou J et al (2020) Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth-Sci Rev 207:103225

    Article  Google Scholar 

  • Miles SB (2011) Participatory model assessment of earthquake-induced landslide hazard models. Nat Hazards 56:749–766

    Article  Google Scholar 

  • Miner A, Vamplew P, Windle DJ et al (2010) A comparative study of various data mining techniques as applied to the modeling of landslide susceptibility on the Bellarine Peninsula. Victoria, Australia

    Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  ADS  Google Scholar 

  • Nadim F, Jaedicke C, Smebye H, Kalsnes B (2013) Assessment of global landslide hazard hotspots. Landslides: global risk preparedness. Springer, USA, pp 59–71

    Chapter  Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191

    Article  Google Scholar 

  • Ngo PTT, Panahi M, Khosravi K et al (2021) Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci Front 12:505–519

    Article  Google Scholar 

  • Nhu V-H, Shirzadi A, Shahabi H et al (2020) Shallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. Int J Environ Res Public Health 17:2749

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicodemus KK (2011) On the stability and ranking of predictors from random forest variable importance measures. Brief Bioinform 12:369–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsen TH, Brabb EE (1977) Slope stability studies in the San Francisco Bay region, California. Rev Eng Geol 3:235–243

    Google Scholar 

  • Parker RN, Hales TC, Mudd SM et al (2016) Colluvium supply in humid regions limits the frequency of storm-triggered landslides. Sci Rep 6:1–7

    Article  Google Scholar 

  • Pascale S, Parisi S, Mancini A, et al (2013) Landslide susceptibility mapping using artificial neural network in the urban area of Senise and San Costantino Albanese (Basilicata, Southern Italy). In: International conference on computational science and its applications. Springer, pp 473–488

  • Paudel U, Oguchi T, Hayakawa Y (2016) Multi-resolution landslide susceptibility analysis using a DEM and random forest. Int J Geosci 7:726

    Article  Google Scholar 

  • Peng L, Niu R, Huang B et al (2014) Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology 204:287–301

    Article  ADS  Google Scholar 

  • Persichillo MG, Bordoni M, Meisina C et al (2017) Shallow landslides susceptibility assessment in different environments. Geomatics, Nat Hazards Risk 8:748–771

    Article  Google Scholar 

  • Pham BT (2018) A novel classifier based on composite hyper-cubes on iterated random projections for assessment of landslide susceptibility. J Geol Soc India 91:355–362

    Article  Google Scholar 

  • Pham BT, Bui DT, Prakash I, Dholakia MB (2017a) Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 149:52–63

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Pourghasemi HR et al (2017b) Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol 128:255–273

    Article  ADS  Google Scholar 

  • Pham BT, Prakash I, Dou J et al (2019) A novel hybrid approach of landslide susceptibility modeling using rotation forest ensemble and different base classifers. Geocarto Int 14:1–25

    Google Scholar 

  • Pham BT, Vu VD, Costache R et al (2022) Landslide susceptibility mapping using state-of-the-art machine learning ensembles. Geocarto Int 37:5175–5200

    Article  ADS  Google Scholar 

  • Poirier JP, Taher MA (1980) Historical seismicity in the near and Middle East, North Africa, and Spain from Arabic documents (VIIth-XVIIIth century). Bull Seismol Soc Am 70:2185–2201

    Article  Google Scholar 

  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM et al (2014) GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab J Geosci 7:1857–1878

    Article  Google Scholar 

  • Qasem SN, Samadianfard S, Sadri Nahand H et al (2019) Estimating daily dew point temperature using machine learning algorithms. Water 11:582

    Article  Google Scholar 

  • Qiu H, Cui P, Regmi AD et al (2019) Loess slide susceptibility assessment using frequency ratio model and artificial neural network. Q J Eng Geol Hydrogeol 52:38–45

    Article  Google Scholar 

  • Rashid A (2004) Impact of El-Nino on summer monsoon rainfall of Pakistan. Pak J Meteorol 1(2):2004

    Google Scholar 

  • Rashid B, Iqbal J, Su L (2020) Landslide susceptibility analysis of Karakoram highway using analytical hierarchy process and scoops 3D. J Mt Sci 17:1596–1612

    Article  Google Scholar 

  • Raso E, Di Martire D, Cevasco A, Calcaterra D, Scarpellini P, Firpo M (2020) Evaluation of prediction capability of the MaxEnt and Frequency Ratio methods for landslide susceptibility in the Vernazza catchment (Cinque Terre, Italy). In: De Maio M, Tiwari AK (eds) Applied geology: approaches to future resource management. Springer International Publishing, Cham, pp 299–316. https://doi.org/10.1007/978-3-030-43953-8_18

    Chapter  Google Scholar 

  • Razavizadeh S, Solaimani K, Massironi M, Kavian A (2017) Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran. Environ Earth Sci 76:1–16

    Article  Google Scholar 

  • Regmi AD, Devkota KC, Yoshida K et al (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7:725–742

    Article  Google Scholar 

  • Reichenbach P, Galli M, Cardinali M et al (2005) Geomorphologic mapping to assess landslide risk: concepts, methods and applications in the Umbria Region of central Italy. Landslide Risk Assessment. John Wiley, Chichester, pp 429–468

    Google Scholar 

  • Reichenbach P, Mondini AC, Rossi M (2014) The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy). Environ Manage 54:1372–1384

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Restrepo C, Alvarez N (2006) Landslides and Their Contribution to Land-cover Change in the Mountains of Mexico and Central America 1. Biotropica 38:446–457

    Article  Google Scholar 

  • Riaz MT, Basharat M, Hameed N et al (2018) A data-driven approach to landslide-susceptibility mapping in mountainous terrain: case study from the Northwest Himalayas, Pakistan. Nat Hazards Rev 19:5018007

    Article  Google Scholar 

  • Rigon R, Bertoldi G, Over TM (2006) GEOtop: a distributed hydrological model with coupled water and energy budgets. J Hydrometeorol 7:371–388

    Article  ADS  Google Scholar 

  • Rizeei HM, Pradhan B, Saharkhiz MA (2019) An integrated fluvial and flash pluvial model using 2D high-resolution sub-grid and particle swarm optimization-based random forest approaches in GIS. Complex Intell Syst 5:283–302

    Article  Google Scholar 

  • Roberds W (2005) Estimating temporal and spatial variability and vulnerability. Landslide risk management. CRC Press, USA

    Google Scholar 

  • Roy J, Saha S, Arabameri A et al (2019) A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong districts, West Bengal. India Remote Sens 11:2866

    Article  ADS  Google Scholar 

  • Ruff M, Czurda K (2008) Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology 94:314–324

    Article  ADS  Google Scholar 

  • Saha S, Roy J, Hembram TK et al (2021) Comparison between deep learning and tree-based machine learning approaches for landslide susceptibility mapping. Water 13:2664

    Article  Google Scholar 

  • Sahin EK (2022) Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto Int 37:2441–2465. https://doi.org/10.1080/10106049.2020.1831623

    Article  ADS  Google Scholar 

  • Samadianfard S, Jarhan S, Salwana E et al (2019) Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin. Water 11:1934

    Article  Google Scholar 

  • Segoni S, Tofani V, Rosi A et al (2018) Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. Front Earth Sci. https://doi.org/10.3389/feart.2018.00085

    Article  Google Scholar 

  • Shirzadi A, Bui DT, Pham BT et al (2017a) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci 76:1–18

    Article  Google Scholar 

  • Shirzadi A, Chapi K, Shahabi H et al (2017b) Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environ Earth Sci 76:1–17

    Article  Google Scholar 

  • Shirzadi A, Soliamani K, Habibnejhad M et al (2018) Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors 18:3777

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Shrestha DP, Zinck JA, Van Ranst E (2004) modeling land degradation in the Nepalese Himalaya. CATENA 57:135–156

    Article  Google Scholar 

  • Sidle R, Ochiai H (2006) Processes, prediction, and land use Water Resour Monogr Am Geophys Union. Washington, USA

    Book  Google Scholar 

  • Simoni S, Zanotti F, Bertoldi G, Rigon R (2008) modeling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS. Hydrol Process an Int J 22:532–545

    Article  ADS  Google Scholar 

  • Song J, Wang Y, Fang Z et al (2020) Potential of ensemble learning to improve tree-based classifiers for landslide susceptibility mapping. IEEE J Sel Top Appl Earth Obs Remote Sens 13:4642–4662

    Article  ADS  Google Scholar 

  • Sujatha ER, Rajamanickam V, Kumaravel P, Saranathan E (2013) Landslide susceptibility analysis using probabilistic likelihood ratio model—a geospatial-based study. Arab J Geosci 6:429–440

    Article  ADS  Google Scholar 

  • Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Tazik E, Jahantab Z, Bakhtiari M et al (2014) Landslide susceptibility mapping by combining the three methods fuzzy logic, frequency ratio and analytical hierarchy process in Dozain basin. Int Arch Photogramm Remote Sens Spat Inf Sci 40:267

    Article  Google Scholar 

  • Thai Pham B, Tien Bui D, Prakash I (2018) Landslide susceptibility modeling using different advanced decision trees methods. Civ Eng Environ Syst 35:139–157

    Article  Google Scholar 

  • Tien Bui D, Tuan TA, Klempe H et al (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13:361–378

    Article  Google Scholar 

  • Tien Bui D, Shirzadi A, Shahabi H et al (2019) New ensemble models for shallow landslide susceptibility modeling in a semi-arid watershed. Forests 10:743

    Article  Google Scholar 

  • Torizin J, Fuchs M, Awan AA et al (2017) Statistical landslide susceptibility assessment of the Mansehra and Torghar districts, Khyber Pakhtunkhwa Province, Pakistan. Nat Hazards 89:757–784

    Article  Google Scholar 

  • Tseng CM, Lin CW, Hsieh WD (2015) Landslide susceptibility analysis by means of event-based multi-temporal landslide inventories. Nat Hazards Earth Syst Sci Discuss 3:1137–1173

    ADS  Google Scholar 

  • van Asch TWJ, Malet J-P, van Beek LPH, Amitrano D (2007) Techniques, issues and advances in numerical modeling of landslide hazard. Bull La Société Géologique Fr 178:65–88

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article  Google Scholar 

  • Vijith H, Krishnakumar KN, Pradeep GS et al (2014) Shallow landslide initiation susceptibility mapping by GIS-based weights-of-evidence analysis of multi-class spatial data-sets: a case study from the natural sloping terrain of Western Ghats, India. Georisk Assess Manag Risk Eng Syst Geohazards 8:48–62

    Article  Google Scholar 

  • Wang G, Lei X, Chen W et al (2020) Hybrid computational intelligence methods for landslide susceptibility mapping. Symmetry 12:325

    Article  ADS  Google Scholar 

  • Xie Z, Chen G, Meng X et al (2017) A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin, China. Environ Earth Sci 76:1–19

    Article  CAS  Google Scholar 

  • Xiong K, Adhikari BR, Stamatopoulos CA et al (2020) Comparison of different machine learning methods for debris flow susceptibility mapping: a case study in the Sichuan Province. China Remote Sens 12:295

    Article  ADS  Google Scholar 

  • Xu C, Xu X, Yao X, Dai F (2014) Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 11:441–461

    Article  Google Scholar 

  • Yu X, Wang Y, Niu R, Hu Y (2016) A combination of geographically weighted regression, particle swarm optimization and support vector machine for landslide susceptibility mapping: a case study at Wanzhou in the Three Gorges Area, China. Int J Environ Res Public Health 13:487

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Fan J, Liu Q, Xiong D (2018) The contribution of gully erosion to total sediment production in a small watershed in Southwest China. Phys Geogr 39:246–263

    Article  Google Scholar 

  • Zhou X, Wen H, Zhang Y et al (2021) Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci Front 12:101211

    Article  Google Scholar 

Download references

Funding

This research was supported by the Major Scientific and Technological Program of Jilin Province (Grant No. 20200503002SF), the Science and Technology Development Planning of Jilin Province (Grant No. 20190303081SF), and the National Key R&D Program of China (2018YFC1508804). We express our gratitude to Dr. Omar Althuwaynee, who contribute to model design and the Scientists Adoption Academy (scadacademy.com) as a facilitator’s website for research development through discussions with professionals in the fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingpeng Liu.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, Y.M., Al-Masnay, Y.A., Al-Areeq, N.M. et al. Estimating landslide hazard distribution based on machine learning and bivariate statistics in Utmah Region, Yemen. Nat Hazards 120, 2869–2907 (2024). https://doi.org/10.1007/s11069-023-06310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-06310-5

Keywords

Navigation