Skip to main content

Advertisement

Log in

A coupled high-resolution hydrodynamic and cellular automata-based evacuation route planning model for pedestrians in flooding scenarios

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Flooding is now becoming one of the most frequent and widely distributed natural hazards, with significant losses to human lives and property around the world. Evacuation of pedestrians during flooding events is a crucial factor in flood risk management, in addition to saving people’s lives and increasing time for rescue. The key objective of this work is to propose a shortest evacuation path planning algorithm by considering the evacuable areas and human instability during floods. A shortest route optimization algorithm based on cellular automata is established while using diagonal distance calculation methods in heuristic search algorithms. The Morpeth flood event that occurred in 2008 in the UK is used as a case study, and a highly accurate and efficient 2D hydrodynamic model is adopted to discuss the flood characteristics in flood plains. Two flood hazard assessment approaches [i.e., empirical and mechanics-based and experimental calibrated (M&E)] are chosen to study human instability. A comprehensive analysis shows that extreme events are better identified with mechanics-based and experimental calibration methods than with an empirical method. The result of M&E is used as the initial condition for the Morpeth evacuation scenario. Evacuation path planning in Morpeth shows that this algorithm can realize shortest route planning with multiple starting points and ending points at the microscale. These findings are of significance for flood risk management and emergency evacuation research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (Grant No. 52079106, 52009104), the Sino-German Mobility Programme (Grant No. M-0427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingming Hou.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Hou, J., Ma, Y. et al. A coupled high-resolution hydrodynamic and cellular automata-based evacuation route planning model for pedestrians in flooding scenarios. Nat Hazards 110, 607–628 (2022). https://doi.org/10.1007/s11069-021-04960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04960-x

Keywords

Navigation