Skip to main content
Log in

Landslides triggered by multiple earthquakes: insights from the 2018 Lombok (Indonesia) events

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Earthquake-triggered landslides significantly contribute to worsening the impact of seismic events; thus, comprehensive landslide inventories are essential for improving seismic hazard assessment. During complex seismic sequences, landslides are triggered by more than one event and the final inventory reflects the spatial and temporal evolution of the sequence. Here, I analyze the landslides triggered by the 2018 Lombok (Indonesia) seismic sequence. I use high-resolution satellite imagery to map 4823 landslides triggered after the 05/08/2018 event (Mw 6.9) and 9319 landslides after the 19/08/2018 event (Mw 6.9). I analyze the distribution and evolution over time of landslide density and landslide area percentage. Despite the significant increase in number and cumulative area of the landslides, the 05/08 and 19/08 events share the maximum dimension of individual landslides; this suggests that the maximum intensity is equal for the two events, i.e., X on the Environmental Scale Intensity scale. I compare the distribution of landslides with macroseismic information provided by eyewitnesses through online questionnaires. Finally, I investigate the role of earthquake environmental effects within seismic sequences, showing that effects on the natural environment provide complementary information with respect to traditional intensity and felt reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Audemard FA, Azuma T, Baiocco F, Baize S, Blumetti AM, Brustia E, Clague J, Comerci V, Esposito E, Guerrieri L, Gürpinar A, Grützner C, Jin K, Kim YS, Kopsachilis V, Lucarini M, McCalpin J, Michetti AM, Mohammadioun B, Mörner N A, Okumura K, Ota Y, Papathanassiou I, Pavlides S, Pérez-López R, Porfido S, Reicherter K, Rodríguez-Pascua MA, Rogozhin E, Scaramella A, Serva L, Silva P, Sintubin M, Tatevossian R, Vittori E (2015) Earthquake environmental effect for seismic hazard assessment: the ESI intensity scale and the EEE Catalogue. Memorie Descrittive della Carta Geologica d’Italia, vol 97. ISPRA, Servizio Geologico D’Italia

  • Beckers J, Lay T (1995) Very broadband seismic analysis of the 1992 Flores, Indonesia, earthquake (M w = 7.9). J Geophys Res 100(B9):18179–18193. https://doi.org/10.1029/95jb01689

    Article  Google Scholar 

  • Budimir MEA, Atkinson PM, Lewis HG (2014) Earthquake-and-landslide events are associated with more fatalities than earthquakes alone. Nat Hazards 72:895–914. https://doi.org/10.1007/s11069-014-1044-4

    Article  Google Scholar 

  • Cepeda J, Smebye H, Vangelsten B, Nadim F, Muslim D (2010) Landslide risk in Indonesia. Global assessment report on disaster risk reduction, ISDR. https://www.preventionweb.net/english/hyogo/gar/2011/en/bgdocs/Cepeda_et_al._2010.pdf Accessed Jan 2019

  • Chang KT, Chiang SH, Hsu ML (2007) Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89(2007):335–347

    Article  Google Scholar 

  • Chunga K, Livio F, Mulas M, Ochoa-Cornejo F, Besenzon D, Ferrario MF, Michetti AM (2018) Earthquake ground effects and intensity of the 16 April 2016 M w 7.8 Pedernales, Ecuador, Earthquake: implications for the source characterization of large subduction earthquakes. Bull Seismol Soc Am. https://doi.org/10.1785/0120180051

    Google Scholar 

  • Civico R, Pucci S, Villani F, Pizzimenti L, De Martini PM, Nappi R, Open EMERGEO Working Group (2018) Surface ruptures following the 30 October 2016 M w 6.5 Norcia earthquake, central Italy. J Maps 14(2):151–160

    Article  Google Scholar 

  • CRED—Centre for Research on the Epidemiology of Disasters (2019). https://www.emdat.be/. Accessed Jan 2019

  • Ganas A, Tsironi V, Valkaniotis S (2018) A preliminary report on the 2018 Lombok region Indonesia earthquakes. https://www.emsc-csem.org/Files/news/Earthquakes_reports/Lombok%20earthquake%20report%20GTV%209-8-2018.pdf. Accessed Jan 2019

  • Griffin J, Nguyen N, Cummins P, Cipta A (2018) Historical earthquakes of the Eastern Sunda Arc: source mechanisms and intensity-based testing of Indonesia’s National Seismic Hazard Assessment. Bull Seismol Soc Am. https://doi.org/10.1785/0120180085

    Google Scholar 

  • Grünthal G (ed) (1999) European Macroseismic Scale 1998 (EMS-98), Cahiers du Centre Européen de Géodynamique et de Séismologie, vol 15. Centre Européen de Géodynamique et de Séismologie, Luxembourg, p 99

    Google Scholar 

  • GSI (Geospatial Information Authority of Japan) (2018) The 2018 Lombok Island, Indonesia Earthquake: crustal deformation detected by ALOS-2 data, update 30 August 2018. http://www.gsi.go.jp/cais/topic180731-index-e.html. Accessed Jan 2019

  • Guidoboni E, Valensise G (2015) On the complexity of earthquake sequences: a historical seismology perspective based on the L’Aquila seismicity (Abruzzo, Central Italy), 1315–1915. Earthq Struct 8:153–184

    Article  Google Scholar 

  • Hamling IJ, Hreinsdóttir S, Clark K, Elliott J, Liang C, Fielding E et al (2017) Complex multifault rupture during the 2016 M w 7.8 Kaikōura earthquake, New Zealand. Science 356(6334):eaam7194

    Article  Google Scholar 

  • Hancox GT, Perrin ND, Dellow GD (2002) Recent studies of historical earthquake-induced landsliding, ground damage, and MM intensity in New Zealand. Bull N Z Soc Earthq Eng 35(2):59–95

    Google Scholar 

  • Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: the essential part of seismic landslide hazard analyses. Eng Geol 122(1–2):9–21

    Article  Google Scholar 

  • Heidarzadeh M, Muhari A, Wijanarto AB (2018) Insights on the source of the 28 September 2018 Sulawesi Tsunami, Indonesia based on spectral analyses and numerical simulations. Pure Appl Geophys. https://doi.org/10.1007/s00024-018-2065-9

    Google Scholar 

  • Jones ES, Hayes GP, Bernardino M, Dannemann FK, Furlong KP, Benz HM, Villaseñor A (2014) Seismicity of the Earth 1900–2012 Java and vicinity: U.S. Geological Survey Open-File Report 2010–1083-N, 1 sheet, scale 1:5,000,000. https://dx.doi.org/10.3133/ofr20101083N

  • Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95(4):406–421

    Article  Google Scholar 

  • Koulali A, Susilo S, McClusky S, Meilano I, Cummins P, Tregoning P, Lister G, Efendi J, Syafi’i MA (2016) Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda Arc. Geophys Res Lett 43:1943–1949. https://doi.org/10.1002/2016GL067941

    Article  Google Scholar 

  • Lavigne F, Degeai JP, Komorowski JC, Guillet S, Robert V, Lahitte P, Oppenheimer C, Stoffel M, Vidal CM, Surono Pratomo I, Wassmer P, Hajdas I, Hadmoko DS, de Belizal E (2013) Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. PNAS 110:16742–16747. https://doi.org/10.1073/pnas.1307520110

    Article  Google Scholar 

  • Lin CW, Liu SH, Lee SY, Liu CC (2006) Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan. Eng Geol 86(2006):87–101

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29:687–711. https://doi.org/10.1002/esp.1064

    Article  Google Scholar 

  • Mangga S, Atmawinata S, Hermanto B, Setyogroho B (1994) Geological Map of The Lombok Sheet, West Nusa Tenggara, scale 1:250.000. Geological Research and Development Centre, Bandung

    Google Scholar 

  • Marc O, Hovius N (2015) Amalgamation in landslide maps: effects and automatic detection. Nat Hazards Earth Syst Sci 15:723–733. https://doi.org/10.5194/nhess-15-723-2015

    Article  Google Scholar 

  • Martha TR, Roy P, Mazumdar R, Govindharaj KB, Kumar KV (2017) Spatial characteristics of landslides triggered by the 2015 M w 7.8 (Gorkha) and M w 7.3 (Dolakha) earthquakes in Nepal. Landslides 14(2):697–704

    Article  Google Scholar 

  • Massey C, Townsend D, Rathje E, Allstadt KE, Lukovic B, Kaneko Y, Bradley B, Wartman J, Jibson RW, Petley DN, Horspool N, Hamling I, Carey J, Cox S, Davidson J, Dellow S, Godt JW, Holden C, Jones K, Kaiser A, Little M, Lyndsell B, McColl S, Morgenstern R, Rengers FK, Rhoades D, Rosser B, Strong D, Singeisen C, Villeneuve M (2018) Landslides Triggered by the 14 November 2016 M w 7.8 Kaikoura Earthquake, New Zealand. Bull Seismol Soc Am. https://doi.org/10.1785/0120170305

    Google Scholar 

  • McCaffrey R, Nabelek J (1987) Earthquakes, gravity, and the origin of the Bali basin: an example of a nascent continental fold-and-thrust belt. J Geophys Res 92(B1):441–460

    Article  Google Scholar 

  • Michetti AM, Esposito E, Guerrieri, Porfido S, Serva L, Tatevossian R, Vittori E, Audemard F, Azuma T, Clague J et al (2007) Environmental Seismic Intensity Scale 2007—ESI 2007, Memorie Descrittive della Carta Geologica d’Italia, vol 74, Servizio Geologico d’Italia, Dipartimento Difesa del Suolo, APAT, Rome, Italy, 7–54. http://www.isprambiente.gov.it/en/publications/technical-periodicals/descriptive-memories-of-the-geological-map-of/intensity-scale-esi-2007?set_language=en. Accessed Dec 2018

  • Musson RMW, Grünthal G, Stucchi M (2010) The comparison of macroseismic intensity scales. J Seismol 14(2):413–428

    Article  Google Scholar 

  • Nguyen N, Griffin J, Cipta A, Cummins PR (2015) Indonesia’s historical earthquakes: modelled examples for improving the national hazard map, Geoscience Australia Record 2015/23, Canberra, Australia

  • Nowicki Jessee MA, Hamburger MW, Allstadt K, Wald DJ, Robeson SM, Tanyas H, Hearne M, Thompson EM (2018) A global empirical model for near-real-time assessment of seismically induced landslides. J Geophys Res Earth Surf 123:1835–1859. https://doi.org/10.1029/2017JF004494

    Article  Google Scholar 

  • Papanikolaou I, Melaki M (2017) The Environmental Seismic Intensity Scale (ESI 2007) in Greece, addition of new events and its relationship with magnitude in Greece and the Mediterranean; preliminary attenuation relationships. Quat Int 451:37–55

    Article  Google Scholar 

  • Parker RN, Densmore AL, Rosser NJ, de Michele M, Li Y, Huang RQ, Whadcoat S, Petley DN (2011) Mass wasting triggered by 2008 Wenchuan earthquake is greater than orogenic growth. Nat Geosci 4(7):449–452

    Article  Google Scholar 

  • Planet Team (2017) Planet application program interface: in space for life on earth. San Francisco, CA. https://api.planet.com

  • Roback K, Clark MK, West AJ, Zekkos D, Lin G, Gallen SF, Chamlagain D, Godt JW (2018) The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology 301:121–138

    Article  Google Scholar 

  • Rodriguez C, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18(1999):325–346

    Article  Google Scholar 

  • Rossi A, Tertulliani A, Azzaro R, Graziani L, Rovida A, Maramai A, Pessina V, Hailemikael S, Buffarini G, Bernardini F, Camassi R, Del Mese S, Ercolani E, Fodarella A, Locati M, Martini G, Paciello A, Paolini S, Arcoraci L, Castellano C, Verrubbi V, Stucchi M (2019) The 2016–2017 earthquake sequence in Central Italy: macroseismic survey and damage scenario through the EMS-98 intensity assessment. Bull Earthq Eng. https://doi.org/10.1007/s10518-019-00556-w

    Google Scholar 

  • Sanchez JJ, Maldonado RF (2016) Application of the ESI 2007 scale to two large earthquakes: South Island, New Zealand (2010 M w 7.1), and Tohoku, Japan (2011 M w 9.0). Bull Seismol Soc Am 106(3):1151–1161

    Article  Google Scholar 

  • Serva L (2019) History of the Environmental Seismic Intensity Scale ESI-07. Geosciences 9:210. https://doi.org/10.3390/geosciences9050210

    Article  Google Scholar 

  • Serva L, Vittori E, Comerci V, Esposito E, Guerrieri L, Michetti AM, Mohammadioun B, Mohammadioun GC, Porfido S, Tatevossian RE (2016) Earthquake hazard and the Environmental Seismic Intensity (ESI) scale. Pure Appl Geophys 173(5):1479–1515. https://doi.org/10.1007/s00024-015-1177-8

    Article  Google Scholar 

  • Silver EA, Reed D, McCaffrey R, Joyodiwiryo Y (1983) Back-arc thrusting in the Eastern Sunda Arc Indonesia: a consequence of arc-continent collision. J Geophys Res 88(B9):7429–7448. https://doi.org/10.1029/JB088iB09p07429

    Article  Google Scholar 

  • Szeliga W, Hough S, Martin S, Bilham R (2010) Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bull Seismol Soc Am 100(2):570–584. https://doi.org/10.1785/0120080329

    Article  Google Scholar 

  • Tanyaş H, van Westen CJ, Allstadt KE, Anna Nowicki Jessee M, Görüm T, Jibson RW, Sato HP, Schmitt RG, Marc O, Hovius N (2017) Presentation and analysis of a worldwide database of earthquake-induced landslide inventories. J Geophys Res Earth Surf 122:1991–2015. https://doi.org/10.1002/2017JF004236

    Article  Google Scholar 

  • USGS (2018) https://earthquake.usgs.gov/earthquakes/eventpage/us1000gda5/executive#executive. Accessed Jan 2019

  • Valagussa A, Marc O, Frattini P, Crosta GB (2019) Seismic and geological controls on earthquake-induced landslide size. Earth Planet Sci Lett 506(2019):268–281

    Article  Google Scholar 

  • van der Eeckhaut M, Poesen J, Govers G, Verstraeten G, Demoulin A (2007) Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet Sci Lett 256(2007):588–603

    Article  Google Scholar 

  • Wald DJ, Quitoriano V, Dengler L, Dewey JW (1999) Utilization of the internet for rapid community intensity maps. Seismol Res Lett 70(6):680–697

    Article  Google Scholar 

  • Wood HO, Neumann F (1931) Modified Mercalli intensity scale of 1931. Bull Seismol Soc Am 21:277–283

    Google Scholar 

  • Xu C, Xu X, Zhou B, Yu G (2013) Revisions of the M 8.0 Wenchuan earthquake seismic intensity map based on co-seismic landslide abundance. Nat Hazards 69:1459–1476. https://doi.org/10.1007/s11069-013-0757-0

    Article  Google Scholar 

  • Xu C, Shyu JBH, Xu X (2014) Landslides triggered by the 12 January 2010 Port-au-Prince, Haiti, M w = 7.0 earthquake: visual interpretation, inventory compiling, and spatial distribution statistical analysis. Nat Hazards Earth Syst Sci 14:1789–1818. https://doi.org/10.5194/nhess-14-1789-2014

    Article  Google Scholar 

  • Yamagishi H, Yamazaki F (2018) Landslides by the 2018 Hokkaido Iburi-Tobu Earthquake on September 6. Landslides. https://doi.org/10.1007/s10346-018-1092-z

    Google Scholar 

Download references

Acknowledgements

I want to thank Franz Livio and Alessandro Michetti for fruitful discussion and the two anonymous reviewers; Planet for providing PlanetScope imagery as part of the Education and Research program and ESA for Copernicus Sentinel data. Did You Feel It data are retrieved from the USGS website (https://earthquake.usgs.gov/data/dyfi/). PRECL Precipitation data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/. Aster GDem is a product of METI and NASA. LandScan 2017™ High Resolution global Population Data Set is copyrighted by UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725 with the United States Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Ferrario.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Supplementary material 2 (KML 23790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrario, M.F. Landslides triggered by multiple earthquakes: insights from the 2018 Lombok (Indonesia) events. Nat Hazards 98, 575–592 (2019). https://doi.org/10.1007/s11069-019-03718-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-019-03718-w

Keywords

Navigation