Skip to main content
Log in

Large wood transport modelling by a coupled Eulerian–Lagrangian approach

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The paper discusses a model which predicts the trajectory of floating rigid bodies and may be applied to compute the motion of woody “debris” mobilized during floods. The model couples a Discrete Element (DE) Lagrangian approach for the calculation of motion of rigid bodies with the Eulerian solution of the shallow water equations (SWE), in order to simulate the transport of a cylinder in a two-dimensional stream. It differs from existing models since it is based on a dynamic approach, adapting the Basset–Boussinesq–Oseen equation. In a first step, forces are computed from flow and log velocities; then, the equations of dynamics are solved to model the planar roto-translation of the body. Model results and physical reliability are clearly affected by the values of the drag and side coefficients, especially since logs, modelled as cylinders, are able to change their orientation towards the flow. Experimental studies to evaluate drag and side coefficients can be found in the literature for a submerged cylinder, with various orientations. To extend such results to the case of a floating log, the authors performed a series of laboratory tests on partially submerged cylinders, implementing the outcomes in the proposed DE-SWE model. The coupled model is validated against existing laboratory data concerning spheres and wooden cylinder transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbe TB, Montgomery DR (1996) Large woody debris jams, channel hydraulics and habitat formation in large rivers. Regul River 12(2–3):201–221

    Article  Google Scholar 

  • Alcrudo F, Garcia Navarro P (1993) A high-resolution Godunov-type scheme in finite volumes for two-dimensional shallow-water equations. Int J Numer Meth Fl 16:489–585

    Article  Google Scholar 

  • Andrus CW, Long BA, Froehlich HA (1989) Woody debris and its contribution to pool formation in a coastal stream 50 years after logging. Can J Fish Aquat Sci 45(12):2080–2086

    Article  Google Scholar 

  • Aronica G, Bates PD, Horritt MS (2002) Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrol Process 16:2001–2016. doi:10.1002/hyp.398

    Article  Google Scholar 

  • Auton TR, Hunt JCR, Prud’Homme M (1988) The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluid Mech 197:241–257. doi:10.1017/S0022112088003246

    Article  Google Scholar 

  • Bermúdez A, Dervieux A, Desideri JA, Vázquez ME (1998) Upwind schemes for the two dimensional shallow water equations with variable depth using unstructured meshes. Comput Method Appl Mech 155(1–2):49–72

    Article  Google Scholar 

  • Bertoldi W, Welber M, Mao L, Zanella S, Comiti F (2014) A flume experiment on wood storage and remobilization in braided river systems. Earth Surf Proc Land 39(6):804–813. doi:10.1002/esp.3537

    Article  Google Scholar 

  • Bluemink JJ, Lohse D, Prosperetti A, Van Wijngaarden L (2008) A sphere in a uniformly rotating or shearing flow. J Fluid Mech 600:201–233. doi:10.1017/S0022112008000438

    Article  Google Scholar 

  • Bocchiola D (2011) Hydraulic characteristics and habitat suitability in presence of woody debris: a flume experiment. Adv Water Resour 34(10):1304–1319. doi:10.1016/j.advwatres.2011.06.011

    Article  Google Scholar 

  • Bocchiola D, Rulli MC, Rosso R (2005) Transport of large woody debris in the presence of obstacles. Geomorphology 76(1–2):166–178. doi:10.1016/j.geomorph.2005.08.016

    Google Scholar 

  • Bocchiola D, Rulli MC, Rosso R (2008) A flume experiment on the formation of wood jams in rivers. Water Resour Res 44:2. doi:10.1029/2006WR005846

    Article  Google Scholar 

  • Braudrick CA, Grant GE (2000) When do logs move in rivers? Water Resour Res 36(2):571–583. doi:10.1029/1999WR900290

    Article  Google Scholar 

  • Braudrick CA, Grant GE (2001) Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology 41(4):263–283. doi:10.1016/S0169-555X(01)00058-7

    Article  Google Scholar 

  • Chow CY (1979) An introduction to computational fluid mechanics. Seminole Publishing Company, Boulder

    Google Scholar 

  • Comiti F, Mao L, Preciso E, Picco L, Marchi L, Borg M (2008) Large wood and flash floods: evidence from the 2007 event in the Davča basin (Slovenia). WIT Trans Eng Sci 60:173–182. doi:10.2495/DEB080181

    Article  Google Scholar 

  • Comiti F, Agostini VD, Moser M, Lenzi MA, Bettella F, Agnese AD, Rigon E, Gius S, Mazzorana B (2012) Preventing wood-related hazards in mountain basins: from wood load estimation to designing retention structures. 12th Congress INTERPRAEVENT 2012 – Grenoble, France, Conference Proceedings, 651–622

  • Comiti F, Lucía A, Rickenmann D (2016) Large wood recruitment and transport during large floods: a review. Geomorphology 269:23–39. doi:10.1016/j.geomorph.2016.06.016

    Article  Google Scholar 

  • Corrsin S, Lumley J (1956) On the equation of motion for a particle in turbulent fluid. Appl Sci Res Sect A 6:114–116. doi:10.1007/BF03185030

    Article  Google Scholar 

  • Costabile P, Macchione F, Petaccia G, Natale L (2014) Representing skewed bridge crossing on 1-D and 2-D flood propagation models: Compared analysis in practical studies. River Flow 2014, Lausanne, Switzerland, Conference Proceedings, 733–741

  • Costabile P, Macchione F, Natale L, Petaccia G (2015a) Comparison of scenarios with and without bridges and analysis of backwater effect in 1-D and 2-D river flood modelling. Comput Modell Eng Sci 109(2):81–103

    Google Scholar 

  • Costabile P, Macchione F, Natale L, Petaccia G (2015b) Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach. Nat Hazards 77(2):181–204

    Article  Google Scholar 

  • Costabile P, Costanzo C, Macchione F (2016) Performances and limitations of the diffusive approximation of the 2-d shallow water equations for flood simulation in urban and rural areas. Appl Num Math. doi:10.1016/j.apnum.2016.07.003

    Google Scholar 

  • Crosato A, Rajbhandari N, Comiti F, Cherradi X, Uijttewaal W (2013) Flume experiments on entrainment of large wood in low-land rivers. J Hydraul Res 51(5):581–588. doi:10.1080/00221686.2013.796573

    Article  Google Scholar 

  • Cunge JA, Holly FM, Verwey A (1980) Practical aspects of computational river hydraulics. Pitman, London

    Google Scholar 

  • De Cicco PN, Paris E, Solari L (2015) Flume experiments on bridge clogging by woody debris: the effect of shape of piers. 36th IAHR World Congress, The Hague, The Netherlands, Conference Proceedings

  • Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists, Adv Ser on Ocean Engineering

  • Fenocchi A, Petaccia G, Sibilla S (2016) Modelling flows in shallow (fluvial) lakes with prevailing circulations in the horizontal plane: limits of 2D compared to 3D models. J Hydroinform 18:928–945. doi:10.2166/hydro.2016.033

    Article  Google Scholar 

  • Fewtrell TJ, Neal JC, Bates PD, Harrison PJ (2011a) Geometric and structural river channel complexity and the prediction of urban inundation. Hydrol Process 25(20):3173–3186. doi:10.1002/hyp.8035

    Article  Google Scholar 

  • Fewtrell TJ, Duncan A, Sampson CC, Neal JC, Bates PD (2011b) Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data. Phys Chem Earth 36(7–8):281–291. doi:10.1016/j.pce.2010.12.011

    Article  Google Scholar 

  • Gippel CJ, O’Neill IC, Finlayson BL, Schnatz I (1996) Hydraulic Guidelines for the re-introduction and management of Large Woody Debris in lowland rivers. Regul River 12:223–236

    Article  Google Scholar 

  • Gschnitzer T, Gems B, Mazzorana B, Aufleger M (2017) Towards a robust assessment of bridge clogging processes in flood risk management. Geomorphology 279:128–140. doi:10.1016/j.geomorph.2016.11.002

    Article  Google Scholar 

  • Gurnell A (2012) Fluvial geomorphology: wood and river landscapes. Nat Geosci 5(2):93–94. doi:10.1038/ngeo1382

    Article  Google Scholar 

  • Hartlieb A (2012) Physical scale model tests on the clogging of a spillway by large wood [Modellversuche zur Verklausung von Hochwasserentlastungsanlagen mit Schwemmholz]. Wasserwirtschaft 6:98–9104 (in German)

    Google Scholar 

  • Hecker C (1997) Physics, Part 3: Collision response. Game Developer Magazine, 11-18

  • Hirsch C (2007) Numerical computation of internal and external flows. Butterworth-Heinmann, Oxford

    Google Scholar 

  • Hoang MC, Laneville A, Légeron F (2015) Experimental study on aerodynamic coefficients of yawed cylinders. J Fluid Struct 54:597–611. doi:10.1016/j.jfluidstructs.2015.01.002

    Article  Google Scholar 

  • Hunter NM, Bates PD, Neelz S, Pender G, Villanueva I, Wright NG, Liang D, Falconer RA, Lin B, Waller S, Crossley AJ, Mason DC (2008) Benchmarking 2D hydraulic models for urban flooding. Proc Inst Civ Eng Water Manag 161(1):13–30. doi:10.1680/wama.2008.161.1.13

    Article  Google Scholar 

  • Hygelund B, Manga M (2003) Field measurements of drag coefficients for model large woody debris. Geomorphology 51(1–3):175–185. doi:10.1016/S0169-555X(02)00335-5

    Article  Google Scholar 

  • Keller EA, Swanson FJ (1979) Effects of large organic material on channel form and fluvial processes. Earth Surf Process 4(4):361–380

    Article  Google Scholar 

  • Lange D, Bezzola GR (2006) Driftwood: problems and solutions [Schwemmholz: Probleme und Lösungsansätze]. VAW-Mitteilung ETH Zurich 188:1–125 (in German)

    Google Scholar 

  • Magnaudet J, Eames I (2000) The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu Rev Fluid Mech 32:659–708

    Article  Google Scholar 

  • Mandø M, Rosendahl L (2010) On the motion of non-spherical particles at high Reynolds number. Powder Technol 202(1–3):1–13. doi:10.1016/j.powtec.2010.05.001

    Article  Google Scholar 

  • Mao L, Andreoli A, Iroumé A, Comiti F, Lenzi MA (2013) Dynamics and management alternatives of in-channel large wood in mountain basins of the southern Andes [Dinámica y alternativas de manejo de material leñoso de gran tamaño en cuencas del sur de Los Andes]. Bosque 34(3):319–330. doi:10.4067/S0717-92002013000300008

    Article  Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26(4):883–889

    Article  Google Scholar 

  • Mazzorana B, Hübl J, Zischg A, Largiader A (2011) Modelling woody material transport and deposition in alpine rivers. Nat Hazards 56(2):425–449. doi:10.1007/s11069-009-9492-y

    Article  Google Scholar 

  • Merten E, Finlay J, Johnson L, Newman R, Stefan H, Vondracek B (2010) Factors influencing wood mobilization in streams. Water Resour Res 46(10):W10514. doi:10.1029/2009WR008772

    Article  Google Scholar 

  • Merz B, Hall J, Disse M, Schumann A (2010) Fluvial flood risk management in a changing world. Nat Hazards Earth Syst Sci 10(3):509–527

    Article  Google Scholar 

  • Persi E, Petaccia G, Sibilla S (2016) Woody debris transport modelling by a coupled DE-SW approach. Geophys Res Abstracts, 18, EGU2016-5992

  • Petaccia G, Soares-Frazão S, Savi F, Natale L, Zech Y (2010) Simplified versus detailed two-dimensional approaches to transient flow modeling in urban areas. J Hydraul Eng-ASCE 136(4):262–266. doi:10.1061/(ASCE)HY.1943-7900.0000154

    Article  Google Scholar 

  • Petaccia G, Lai C, Milazzo C, Natale L (2016a) The collapse of the Sella Zerbino gravity dam. Eng Geol 211:39–49. doi:10.1016/j.enggeo.2016.06.024

    Article  Google Scholar 

  • Petaccia G, Leporati F, Torti E (2016b) OpenMP and CUDA simulations of Sella Zerbino Dam break on unstructured grids. Computat Geosci 20(5):1123–1132. doi:10.1007/s10596-016-9580-5

    Article  Google Scholar 

  • Picco L, Sitzia T, Mao L, Comiti F, Lenzi MA (2016) Linking riparian woody communities and fluviomorphological characteristics in a regulated gravel-bed river (Piave River, Northern Italy). Ecohydrology 9(1):101–112. doi:10.1002/eco.1616

    Article  Google Scholar 

  • Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43(2):357–372

    Article  Google Scholar 

  • Ruiz-Villanueva V (2012) New methods in the flash flood hazard and risk analysis in mountain basins. Ph.D. Dissertation, Universidad Complutense de Madrid

  • Ruiz-Villanueva V, Bodoque JM, Díez-Herrero A, Bladé E (2014a) Large wood transport as significant influence on flood risk in a mountain village. Nat Hazards 74(2):967–987. doi:10.1007/s11069-014-1222-4

    Article  Google Scholar 

  • Ruiz-Villanueva V, Bladé Castellet E, Díez-Herrero A, Bodoque JM, Sánchez-Juny M (2014b) Two-dimensional modelling of large wood transport during flash floods. Earth Surf Proc Land 39(4):438–449. doi:10.1002/esp.3456

    Article  Google Scholar 

  • Schmocker L, Hager WH (2011) Probability of Drift Blockage at Bridge Decks. J Hydraul Eng-ASCE 137(4):470–479. doi:10.1061/(ASCE)HY.1943-7900.0000319

    Article  Google Scholar 

  • Schmocker L, Weitbrecht V (2013) Driftwood: risk analysis and engineering measures. J Hydraul Eng-ASCE 139(7):683–695. doi:10.1061/(ASCE)HY.1943-7900.0000728

    Article  Google Scholar 

  • Stockstill RL, Daly SF, Hopkins MA (2009) Modeling floating objects at river structures. J Hydraul Eng-ASCE 135(5):403–414. doi:10.1061/(ASCE)0733-9429(2009)135:5(403)

    Article  Google Scholar 

  • Tagawa Y, van der Molen J, van Wijngaarden L, Sun C (2013) Wall forces on a sphere in a rotating liquid-filled cylinder. Phys Fluids 25(6):063302. doi:10.1063/1.4811406

    Article  Google Scholar 

  • Toro E (2009) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, Berlin

    Book  Google Scholar 

  • Truscott TT, Techet AH (2009) Water entry of spinning spheres. J Fluid Mech 625:135–165. doi:10.1017/S0022112008005533

    Article  Google Scholar 

  • Welber M, Bertoldi W, Tubino M (2013) Wood dispersal in braided streams: results from physical modelling. Water Resour Res 49(11):7388–7400. doi:10.1002/2013WR014046

    Article  Google Scholar 

  • Yin C, Rosendahl L, Knudsen KS, Sørensen H (2003) Modelling the motion of cylindrical particles in a nonuniform flow. Chem Eng Sci 58(15):3489–3498. doi:10.1016/S0009-2509(03)00214-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the CINECA award under the ISCRA initiative, for the availability of high-performance computing resources and support. Part of the work was realized within the project HPCEFM16—High Performance Computing for Environmental Fluid Mechanics 2016 (Italian National HPC Research Project); instrumental funding based on competitive calls (ISCRA-C project at CINECA, Italy); 2016; Amicarelli A. (Principal Investigator), G. Agate, G. Curci, S. Falasca, E. Ferrero, A. Bisignano, G. Leuzzi, P. Monti, F. Catalano, S. Sibilla, E. Persi, G. Petaccia. The authors are grateful to Prof. Pilar Garcia-Navarro and Prof. Pilar Brufau for the important contribution given to the mathematical formulation, and to Dr. Virginia Ruiz-Villanueva for sharing data and knowledges on wood transport. Thanks to Prof. Paolo Ghilardi, Dr. Sauro Manenti and Dr. Andrea Fenocchi for their useful commentaries, to Maria Giovanna Balzi and Stella Cogliandro for their precious work, and to the reviewers for their accurate observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Persi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persi, E., Petaccia, G. & Sibilla, S. Large wood transport modelling by a coupled Eulerian–Lagrangian approach. Nat Hazards 91 (Suppl 1), 59–74 (2018). https://doi.org/10.1007/s11069-017-2891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-2891-6

Keywords

Navigation