Skip to main content
Log in

Detecting torrential processes from a distance with a seismic monitoring network

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The detection of debris flows through seismic devices occurs at a certain distance from the channel bed. Ground vibration detectors are installed outside of the flow path, usually along the banks of the torrent or on the surrounding valley slopes, in order to avoid damage or even complete destruction. Seismic networks, however, are also prone to detect other earth surface processes that can be confused with the passage of a debris flow. Recognizing these other processes is important, particularly when the seismic network is used for warning purposes and not only for monitoring. To this aim, two seismic networks were installed in two instrumented basins located in the Italian Alps. Both networks were designed for debris flow monitoring purposes and for testing warning algorithms. In this paper, the seismic recordings of torrential processes that occurred at different distance from the monitoring networks, within and outside the monitored channels, are presented and discussed. It was found that knowledge of the waveform that these different processes produce is critical to the successful design and implementation of seismic networks for debris flow warning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abancó C, Hürlimann M, Moya J (2014) Analysis of the ground vibration generated by debris flows and other torrential processes at the Rebaixader monitoring site (Central Pyrenees, Spain). Nat Hazards Earth Syst Sci 14:929–943. doi:10.5194/nhess-14-929-2014

    Article  Google Scholar 

  • Allstadt K (2013) Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms. J Geophys Res Earth Surf 118:1472–1490. doi:10.1002/jgrf.20110

    Article  Google Scholar 

  • Amitrano D, Grasso JR, Senfaute G (2005) Seismic precursory patterns before a cliff collapse and critical point phenomena. Geophys Res Lett 32:1–5. doi:10.1029/2004GL022270

    Google Scholar 

  • Arattano M (2003) Monitoring the presence of the debris-flow front and its velocity through ground vibration detectors. In: Reickenmann Chen (ed) Third international conference on debris-flow hazards mitigation: mechanics, prediction, and assessment. Millpress, Rotterdam, pp 10–12

    Google Scholar 

  • Arattano M, Marchi L (2005) Measurements of debris flow velocity through cross-correlation of instrumentation data. Nat Hazards Earth Syst Sci 5:137–142. doi:10.5194/nhess-5-137-2005

    Article  Google Scholar 

  • Arattano M, Conte R, Franzi L, Giordan D, Lazzari A, Luino F (2010) Risk management on an alluvial fan: a case study of the 2008 debris-flow event at Villar Pellice (Piedmont, N–W Italy). Nat Hazards Earth Syst Sci 10:999–1008. doi:10.5194/nhess-10-999-2010

    Article  Google Scholar 

  • Arattano M, Abancó C, Coviello V, Hürlimann M (2014) Processing the ground vibration signal produced by debris flows: the methods of amplitude and impulses compared. Comput Geosci 73:17–27. doi:10.1016/j.cageo.2014.08.005

    Article  Google Scholar 

  • Arattano M, Cavalli M, Comiti F, Coviello V, Macconi P, Marchi L (2015) Standardization of methods and procedures for debris flow seismic monitoring. In: Lollino G, Arattano M, Rinaldi M, Giustolisi O, Marechal J-C, Grant GE (eds) Engineering geology for society and territory, vol 3. Springer, Switzerland, pp 63–67. doi:10.1007/978-3-319-09054-2_13

    Google Scholar 

  • Badoux A, Graf C, Rhyner J, Kuntner R, McArdell BW (2008) A debris-flow alarm system for the Alpine Illgraben catchment: design and performance. Nat Hazards 49:517–539. doi:10.1007/s11069-008-9303-x

    Article  Google Scholar 

  • Berti M, Genevois R, LaHusen R, Simoni A, Tecca PR (2000) Debris flow monitoring in the acquabona watershed on the dolomites (Italian Alps). Phys Chem Earth (B) 25:707–715. doi:10.1016/S1464-1909(00)00090-3

    Article  Google Scholar 

  • Bessason B, Eiriksson G, Thorarinsson O, Thorarinsson A, Einarsson S (2007) Automatic detection of avalanches and debris flows by seismic methods. J Glaciol 53:461–472. doi:10.3189/002214307783258468

    Article  Google Scholar 

  • Burtin A, Bollinger L, Cattin R, Vergne J, Nábělek JL (2009) Spatiotemporal sequence of Himalayan debris flow from analysis of high-frequency seismic noise. J Geophys Res 114:F04009. doi:10.1029/2008JF001198

    Google Scholar 

  • Burtin A, Cattin R, Bollinger L, Vergne J, Steer P, Robert A, Findling N, Tiberi C (2011) Towards the hydrologic and bed load monitoring from high-frequency seismic noise in a braided river: the “torrent de St Pierre”, French Alps. J Hydrol 408:43–53. doi:10.1016/j.jhydrol.2011.07.014

    Article  Google Scholar 

  • Burtin A, Hovius N, McArdell BW, Turowski JM, Vergne J (2014) Seismic constraints on dynamic links between geomorphic processes and routing of sediment in a steep mountain catchment. Earth Surf Dyn. 2:21–33. doi:10.5194/esurf-2-21-2014

    Article  Google Scholar 

  • Comiti F, Marchi L, Macconi P, Arattano M, Bertoldi G, Borga M, Brardinoni F, Cavalli M, D’Agostino V, Penna D, Theule J (2014) A new monitoring station for debris flows in the European Alps: first observations in the Gadria basin. Nat Hazards 73:1175–1198. doi:10.1007/s11069-014-1088-5

    Article  Google Scholar 

  • Coussot P, Laigle D, Arattano M, Deganutti AM, Marchi L (1998) Direct determination of rheological characteristics of debris flow. J Hydraul Eng 124:865–868. doi:10.1061/(ASCE)0733-9429(1998)124:8(865)

    Article  Google Scholar 

  • Coviello V, Chiarle M, Arattano M, Pogliotti P, Morra di Cella U (2015) Monitoring rock wall temperatures and microseismic activity for slope stability investigation at JA Carrel hut, Matterhorn. In: Lollino G, Manconi A, Clague J, Shan W, Chiarle M (eds) Engineering geology for society and territory. Springer, Berlin, pp 305–309. doi:10.1007/978-3-319-09300-0

    Google Scholar 

  • Cui P, Chen X, Waqng Y, Hu K, Li Y (2005) Jiangjia Ravine debris flows in south-western China. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin

    Google Scholar 

  • Dammeier F, Moore JR, Haslinger F, Loew S (2011) Characterization of alpine rockslides using statistical analysis of seismic signals. J Geophys Res 116:F04024. doi:10.1029/2011JF002037

    Google Scholar 

  • Deparis J, Jongmans D, Cotton F, Baillet L, Thouvenot F, Hantz D (2008) Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps. Bull Seismol Soc Am. doi:10.1785/0120070082

    Google Scholar 

  • Díaz J, Ruíz M, Crescentini L, Amoruso A, Gallart J (2014) Seismic monitoring of an Alpine mountain river. J Geophys Res Solid Earth 119:3276–3289. doi:10.1002/2014JB010955

    Article  Google Scholar 

  • Feng Z (2012) The seismic signatures of the surge wave from the 2009 Xiaolin landslide-dam breach in Taiwan. Hydrol Process 26:1342–1351. doi:10.1002/hyp.8239

    Article  Google Scholar 

  • Govi M, Maraga F, Moia F (1993) Seismic detectors for continuous bed load monitoring in a gravel stream. Hydrol Sci J 38:123–132. doi:10.1080/02626669309492650

    Article  Google Scholar 

  • Hsu L, Finnegan NJ, Brodsky EE (2011) A seismic signature of river bed load transport during storm events. Geophys Res Lett. doi:10.1029/2011GL047759

    Google Scholar 

  • Huang C-J, Yin H-Y, Chen C-Y, Yeh C-H, Wang C-L (2007) Ground vibrations produced by rock motions and debris flows. J Geophys Res 112:F02014. doi:10.1029/2005JF000437

    Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238

    Article  Google Scholar 

  • Hürlimann M, Abancó C, Moya J, Raïmat C, Luis-fonseca R (2011) Debris-flow monitoring stations in the Eastern Pyrenees. Description of instrumentation, first experiences and preliminary results. In: Genevois R, Hamilton DL, Prestininzi A (eds) 5th International conference on debris-flow hazards mitigation: mechanics, prediction and assessment. Casa Editrice Università La Sapienza, Roma, pp 553–562. doi:10.4408/IJEGE.2011-03.B-061

    Google Scholar 

  • Hürlimann M, Abancó C, Moya J (2012) Rockfalls detached from a lateral moraine during spring season. 2010 and 2011 events observed at the Rebaixader debris-flow monitoring site (Central Pyrenees, Spain). Landslides 9:385–393. doi:10.1007/s10346-011-0314-4

    Article  Google Scholar 

  • Iverson RM, George DL, Allstadt K, Reid ME, Collins BD, Vallance JW, Schilling SP, Godt JW, Cannon CM, Magirl CS, Baum RL, Coe JA, Schulz WH, Bower JB (2015) Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet Sci Lett 412:197–208. doi:10.1016/j.epsl.2014.12.020

    Article  Google Scholar 

  • Kean JW, Coe JA, Smith JB, Coviello V, McCoy SW (2014) Can the flow dynamics of debris flows be identified from seismic data? In: AGU fall meeting abstracts, p 3852

  • Kogelnig A, Hübl J, Suriñach E, Vilajosana I, McArdell BW (2011) Infrasound produced by debris flow: propagation and frequency content evolution. Nat Hazards 70:1713–1733. doi:10.1007/s11069-011-9741-8

    Article  Google Scholar 

  • Lahusen R (1998) Detecting debris flows using ground vibrations (No. Fact Sheet 236-96)

  • Lahusen R (2005) Debris-flow instrumentation. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 291–304

    Chapter  Google Scholar 

  • Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46:1–17. doi:10.1016/S0169-555X(01)00162-3

    Article  Google Scholar 

  • McCoy SW, Kean JW, Coe JA, Staley DM, Wasklewicz TA, Tucker GE (2010) Evolution of a natural debris flow: in situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology 38:735–738. doi:10.1130/G30928.1

    Article  Google Scholar 

  • Moretti L, Mangeney A, Capdeville Y, Stutzmann E, Huggel C, Schneider D, Bouchut F (2012) Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophys Res Lett. doi:10.1029/2012GL052511

    Google Scholar 

  • Navratil O, Liébault F, Bellot H, Travaglini E, Theule J, Chambon G, Laigle D (2013) High-frequency monitoring of debris-flow propagation along the Réal Torrent, Southern French Prealps. Geomorphology 201:157–171. doi:10.1016/j.geomorph.2013.06.017

    Article  Google Scholar 

  • Rickenmann D, Turowski JM, Fritschi B, Klaiber A, Ludwig A (2012) Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surf Process Landf 37:1000–1011. doi:10.1002/esp.3225

    Article  Google Scholar 

  • Schimmel A, Hübl J (2015) Approach for an early warning system for debris flow based on acoustic signals. In: Lollino G, Arattano M, Rinaldi M, Giustolisi O, Marechal J-C, Grant GE (eds) Engineering geology for society and territory, vol 3. Springer, Switzerland, pp 55–58. doi:10.1007/978-3-319-09054-2_11

    Google Scholar 

  • Suriñach E, Vilajosana I, Khazaradze G, Biescas B, Furdada G, Vilaplana JM (2005) Seismic detection and characterization of landslides and other mass movements. Nat Hazards Earth Syst Sci 5:791–798. doi:10.5194/nhess-5-791-2005

    Article  Google Scholar 

  • Suwa H, Okano K, Kanno T (2011) Forty years of debris-flow monitoring at Kamikamihorizawa Creek, Mount Yakedake, Japan. In: Genevois R, Hamilton DL, Prestininzi A (eds) 5th international conference on debris-flow hazards mitigation: mechanics, prediction and assessment. Casa Editrice Università La Sapienza, Roma, pp 605–613

    Google Scholar 

  • Travaglini E, Bardou E, Ancey C, Bohorquez P (2015) Analysis of sediment transport from recorded signals of sediments in a grave-bed river: role of sediment availability. In: Lollino G, Arattano M, Rinaldi M, Giustolisi O, Marechal J-C, Grant GE (eds) Engineering geology for society and territory, vol 3. Springer, Berlin, pp 477–481. doi:10.1007/978-3-319-09054-2_98

    Google Scholar 

  • Tropeano D, Govi M, Mortara G, Turitto O, Sorzana P, Negrini G, Arattano M (1999) Eventi alluvionali e frane nell’Italia settentrionale Periodo 1975–1981. CNR—Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, Pubblicazione n. 1927

  • Turconi L, Tropeano D, Savio G (2008) Debris flows in the Marderello catchment in Summer 2005 (Cenischia Valley, Western Italian Alps): a critical rainfall-process analysis. Wildbach und Lawinenverbau 72:42–61

    Google Scholar 

  • Turconi L, De Kumar S, Tropeano D, Savio G (2010) Slope failure and related processes in the Mt. Rocciamelone area (Cenischia Valley, Western Italian Alps). Geomorphology 114:115–128. doi:10.1016/j.geomorph.2009.06.012

    Article  Google Scholar 

  • Turconi L, Coviello V, Arattano M, Savio G, Tropeano D (2015) Monitoring mud-flows for investigative and warning purposes: the instrumented catchment of Rio Marderello (North-Western Italy). In: Lollino G, Arattano M, Rinaldi M, Giustolisi O, Marechal J-C, Grant GE (eds) Engineering geology for society and territory. Springer, Switzerland, pp 85–90. doi:10.1007/978-3-319-09054-2

    Google Scholar 

  • Yamada M, Kumagai H, Matsushi Y, Matsuzawa T (2013) Dynamic landslide processes revealed by broadband seismic records. Geophys Res Lett 40:2998–3002. doi:10.1002/grl.50437

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the POR FESR 2007/2013—Regione PiemonteRepubblica Italiana and by the European Territorial Cooperation Alpine Space Programme 2007–2013—SedAlp project. We are grateful to Gabriele Savio for his generous collaboration during the fieldwork activities conducted in the Marderello basin and to Domenico Tropeano for the suggestions given during the preparation of this work. Pierpaolo Macconi, Stefan Hellweger and Rudolf Pollinger (Department of Hydraulic Engineering, Autonomous Province of Bozen-Bolzano) are warmly thanked for supporting the monitoring activities conducted in the Gadria basin. We are grateful to the whole Gadria team and in particular to the colleagues Gabriele Bertoldi, Marco Cavalli, Francesco Comiti, Stefano Crema, Lorenzo Marchi and Joshua Theule for their full support of this research. The company SIAP+MICROS participated in the design and provided the recording unit ALMOND-F now installed in both sites, and in particular, we want to thank Marco Del Missier, Stafano Perin and Massimiliano Sanna for their collaboration. Finally, we wish to thank Jeffrey Coe and another anonymous reviewer for their careful revisions that significantly improved the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Coviello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coviello, V., Arattano, M. & Turconi, L. Detecting torrential processes from a distance with a seismic monitoring network. Nat Hazards 78, 2055–2080 (2015). https://doi.org/10.1007/s11069-015-1819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1819-2

Keywords

Navigation