Skip to main content

Advertisement

Log in

Assessment of flood hazard during extreme sea levels in a tidally dominated lagoon

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The inundation of coastal regions is recognized as a major threat to people, livelihoods, and the ecosystem health. The assessment of the magnitude of flooding drivers and the flood extension mapping are essential to avoid and reduce the adverse impacts of floods. Attending these issues, the present study aims to assess marine-induced inundation in Ria de Aveiro coastal lagoon under extreme sea levels induced by astronomic tide and storm surge events. The approach followed integrates joint probability analysis of residual and astronomical levels from the lagoon inlet with application of the ELCIRC hydrodynamic model, which was validated for tidal and storm surge conditions. The model is applied under extreme sea levels corresponding to 2- and 100-year return periods of storm surges combined with tidal elevation for the present mean sea level and also considering a mean sea level rise estimate of 0.42 m for both return periods. A mean spring tide was also simulated as the reference case. The maximum levels, the lagoon flooded area and the tidal prism across the lagoon main channels were analysed for all simulations. The application of joint probability analysis of residual and astronomical levels resulted in extreme sea levels between 3.85 and 4.56 m, relative to the local chart datum. The validation results evidence that model reproduces accurately both tidal and storm surge propagation. The lagoon flooded area increased between 22 and 79 % for the most optimistic and pessimistic scenarios, respectively, relatively to the reference tide. The morphological lagoon features (depth of channels and topography of margins) determine the tidal prism and consequently the marginal inundation patterns found. Consequently, the more exposed regions present low altitude and are located at the margins of deeper channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrade C, Pires HO, Taborda R, Freitas MC (2006) Zonas Costeiras. In: Alterações Climáticas em Portugal. Cenários, Impactos e Medidas de Adaptação—Projecto SIAM II. Gradiva, Lisboa, pp 169–208

  • Araújo IGB (2005) Sea level variability: Examples from the Atlantic Coast of Europe. University of Southampton. http://www.nmec.eu/images/teses/iaraujo.pdf

  • Araújo IB, Dias JM, Pugh DT (2008) Model simulations of tidal changes in a coastal lagoon, the Ria de Aveiro (Portugal). Cont Shelf Res 28:1010–1025. doi:10.1016/j.csr.2008.02.001

    Article  Google Scholar 

  • Balica SF, Popescu I, Beevers L, Wright NG (2013) Parametric and physically based modelling techniques for flood risk and vulnerability assessment: a comparison. Environ Model Softw 41:84–92. doi:10.1016/j.envsoft.2012.11.002

    Article  Google Scholar 

  • Bhaskaran PK, Gayathri R, Murty PLN, Bonthu S, Sen D (2014) A numerical study of coastal inundation and its validation for Thane cyclone in the Bay of Bengal. Coast Eng 83:108–118. doi:10.1016/j.coastaleng.2013.10.005

    Article  Google Scholar 

  • Chan YK (1983) Statistics of extreme sea-levels in Hong Kong. R Obs 35:24

  • Condon AJ, Sheng YP (2012) Optimal storm generation for evaluation of the storm surge inundation threat. Ocean Eng 43:13–22. doi:10.1016/j.oceaneng.2012.01.021

    Article  Google Scholar 

  • Dias JM (2001) Contribution to the study of the Ria de Aveiro hydrodynamics. University of Aveiro. http://hdl.handle.net/10773/4939

  • Dias JM, Lopes JF, Dekeyser I (1999) Hydrological characterisation of Ria de Aveiro, Portugal, in early summer. Oceanol Acta 22:473–485. doi:10.1016/S0399-1784(00)87681-1

    Article  Google Scholar 

  • Dias JM, Lopes JF, Dekeyser I (2000) Tidal propagation in Ria de Aveiro lagoon, Portugal. Phys Chem Earth Part B 25:369–374. doi:10.1016/S1464-1909(00)00028-9

    Article  Google Scholar 

  • FitzGerald DM, Fenster MS, Argow BA, Buynevich IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647. doi:10.1146/annurev.earth.35.031306.140139

    Article  Google Scholar 

  • Fortunato AB, Pinto L, Oliveira A, Ferreira JS (2002) Tidally generated shelf waves off the western Iberian coast. Cont Shelf Res 22:1935–1950. doi:10.1016/S0278-4343(02)00069-9

    Article  Google Scholar 

  • Fortunato AB, Rodrigues M, Dias JM, Lopes CL, Oliveira A (2013) Generating inundation maps for a coastal lagoon: a case study in the Ria de Aveiro (Portugal). Ocean Eng 64:60–71

    Article  Google Scholar 

  • Gallien TW, Schubert JE, Sanders BF (2011) Predicting tidal flooding of urbanized embayments: a modeling framework and data requirements. Coast Eng 58:567–577. doi:10.1016/j.coastaleng.2011.01.011

    Article  Google Scholar 

  • Génio L, Sousa A, Vaz N, Dias JM, Barroso C (2008) Effect of low salinity on the survival of recently hatched veliger of Nassarius reticulatus (L.) in estuarine habitats: a case study of Ria de Aveiro. J Sea Res 59:133–143

    Article  Google Scholar 

  • Hawkes PJ (2008) Joint probability analysis for estimation of extremes. J Hydraul Res 46:246–256

    Article  Google Scholar 

  • Jonkman SN, Vrijling JK (2008) Loss of life due to floods. J Flood Risk Manag 1:43–56. doi:10.1111/j.1753-318X.2008.00006.x

    Article  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat As 53:457–481

    Article  Google Scholar 

  • Kuhn M, Tuladhar D, Corner R (2011) Visualising the spatial extent of predicted coastal zone inundation due to sea level rise in south-west Western Australia. Ocean Coast Manag 54:796–806. doi:10.1016/j.ocecoaman.2011.08.005

    Article  Google Scholar 

  • Liu JC, Lence BJ, Isaacson M (2010) Direct joint probability method for estimating extreme sea levels. J Waterw Port C-Asce 136:66–76. doi:10.1061/(Asce)0733-950x(2010)136:1(66

    Article  Google Scholar 

  • Lopes CL, Silva PA, Dias JM, Rocha A, Picado A, Plecha S, Fortunato AB (2011) Local sea level change scenarios for the end of the 21st century and potential physical impacts in the lower Ria de Aveiro (Portugal). Cont Shelf Res 31:1515–1526. doi:10.1016/j.csr.2011.06.015

    Article  Google Scholar 

  • Lopes CL, Azevedo A, Dias JM (2013a) Flooding assessment under sea level rise scenarios: Ria de Aveiro case study. J Coast Res 65:766–771

  • Lopes CL, Plecha S, Silva PA, Dias JM (2013b) Influence of morphological changes in a lagoon flooding extension: case study of Ria de Aveiro (Portugal). J Coast Res 1158–1163

  • Marinheiro JMS (2008) Assoreamento da Ria de Aveiro: Causas e Soluções. Msc, Aveiro University. http://hdl.handle.net/10773/2330

  • Meehl GA et al (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., pp 747–846

  • Mendicino G, Senatore A (2013) Evaluation of parametric and statistical approaches for the regionalization of flow duration curves in intermittent regimes. J Hydrol 480:19–32. doi:10.1016/j.jhydrol.2012.12.017

    Article  Google Scholar 

  • Nicholls RJ, Hoozemans FMJ, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob Environ Change Hum Policy Dimens 9:S69–S87. doi:10.1016/s0959-3780(99)00019-9

    Article  Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Comput Geosci 28:929–937. doi:10.1016/S0098-3004(02)00013-4

    Article  Google Scholar 

  • Peng MC, Xie L, Pietrafesa LJ (2004) A numerical study of storm surge and inundation in the Croatan–Albemarle–Pamlico estuary system. Estuar Coast Shelf Sci 59:121–137. doi:10.1016/j.ecss.2003.07.010

    Article  Google Scholar 

  • Picado A, Dias JM, Fortunato AB (2010) Tidal changes in estuarine systems induced by local geomorphologic modifications. Cont Shelf Res 30:1854–1864. doi:10.1016/j.csr.2010.08.012

    Article  Google Scholar 

  • Plate EJ (2002) Flood risk and flood management. J Hydrol 267:2–11. doi:10.1016/S0022-1694(02)00135-X

    Article  Google Scholar 

  • Plecha S, Sancho F, Silva P, Dias JM (2007) Representative waves for morphological simulations. J Coast Res 995–999

  • Pugh D (2004) Changing sea levels. Effects of tides, weather and climate. Cambridge University Press, Cambridge

    Google Scholar 

  • Purvis MJ, Bates PD, Hayes CM (2008) A probabilistic methodology to estimate future coastal flood risk due to sea level rise. Coast Eng 55:1062–1073. doi:10.1016/j.coastaleng.2008.04.008

    Article  Google Scholar 

  • Rego JL, Li CY (2010) Storm surge propagation in Galveston Bay during Hurricane Ike. J Mar Syst 82:265–279. doi:10.1016/j.jmarsys.2010.06.001

    Article  Google Scholar 

  • Sheng YP, Zhang YF, Paramygin VA (2010) Simulation of storm surge, wave, and coastal inundation in the Northeastern Gulf of Mexico region during Hurricane Ivan in 2004. Ocean Model 35:314–331. doi:10.1016/j.ocemod.2010.09.004

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192. doi:10.1029/2000jd900719

    Article  Google Scholar 

  • Tsihrintzis VA, Sylaios GK, Sidiropoulou M, Koutrakis ET (2007) Hydrodynamic modeling and management alternatives in a Mediterranean, fishery exploited, coastal lagoon. Aquacult Eng 36:310–324. doi:10.1016/j.aquaeng.2007.01.007

    Article  Google Scholar 

  • Vaz N, Dias JM, Leitao PC (2009) Three-dimensional modelling of a tidal channel: the Espinheiro Channel (Portugal). Cont Shelf Res 29:29–41. doi:10.1016/j.csr.2007.12.005

    Article  Google Scholar 

  • Venkatram A (2008) Computing and displaying model performance statistics. Atmos Environ 42:6862–6868. doi:10.1016/j.atmosenv.2008.04.043

    Article  Google Scholar 

  • Weisse R, Bellafiore D, Menendez M, Mendez F, Nicholls RJ, Umgiesser G, Willems P (2014) Changing extreme sea levels along European coasts. Coast Eng 87:4–14. doi:10.1016/j.coastaleng.2013.10.017

    Article  Google Scholar 

  • Yasuda T, Nakajo S, Kim S, Mase H, Mori N, Horsburgh K (2014) Evaluation of future storm surge risk in East Asia based on state-of-the-art climate change projection. Coast Eng 83:65–71. doi:10.1016/j.coastaleng.2013.10.003

    Article  Google Scholar 

  • Zhang YL, Baptista AM, Myers EP (2004) A cross-scale model for 3D baroclinic circulation in estuary–plume–shelf systems: I. Formulation and skill assessment. Cont Shelf Res 24:2187–2214. doi:10.1016/j.csr.2004.07.021

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Doctor André Fortunato from LNEC (National Laboratory for Civil Engineering) for all the support given on the model implementation. The first author benefits from a PhD Grant (SFRH/BD/78345/2011) given by the Portuguese Science Foundation FCT (Fundação para a Ciência e Tecnologia). This work has been partly supported by FCT and by European Union (COMPETE, QREN, FEDER) in the frame of the research projects AdaptaRia (PTDC/AAC-CLI/100953/2008) and LTER-RAVE (LTER/BIA-BEC/0063/2009). The European Commission, under the 7th Framework Programme, also supported this study through the collaborative research project LAGOONS (Contract No. 283157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. Dias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, C.L., Dias, J.M. Assessment of flood hazard during extreme sea levels in a tidally dominated lagoon. Nat Hazards 77, 1345–1364 (2015). https://doi.org/10.1007/s11069-015-1659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1659-0

Keywords

Navigation