Skip to main content
Log in

Extreme scour effects on the buckling of bridge piles considering the stress history of soft clay

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Scour is a natural phenomenon caused by the erosion or removal of streambed or bank material from bridge foundations due to flowing water. As the buckling capacity of bridge piles varies inversely with the square of the unsupported pile height, an extreme scour at the pile caused by floodwater could result in a buckling failure of the pile and collapse of the bridge. The common way to analyze the scour-affected buckling stability of bridge piles is to remove the scoured soil layers while possible changes in stress history of the remaining soils are ignored. In reality, however, the remaining soils undergo an unloading process due to scour, and its overconsolidation ratios are increased. In this study, an analytical model with modified lateral subgrade modulus is presented to investigate the extreme scour effect on the buckling of bridge piles in soft clay considering the stress history of the remaining soils. A case study is used to compare the calculated results by considering and ignoring the stress history effect. The results show that ignoring the stress history of the soft clay will overestimate the buckling capacity of bridge pile foundation under scour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Brandtzaeg A, Harboe E (1957) Buckling tests of slender steel piles in soft, quick clay. In: Proceedings of the 4th international conferences on soil mechanics and foundation engineering, pp 19–23

  • Brown DA, Castelli RJ (2010) Construction procedures and LRFD design methods. Report FHWA-NHI-10-016, Federal Highway Administration, Washington, DC

  • Budkowska BB, Szymczak CS (1997) Initial post-buckling behavior of piles partially embedded in soil. Comput Struct 62(5):831–835

    Article  Google Scholar 

  • Davisson MT (1963) Estimating buckling loads for piles. In: Proceedings of the 2nd Pan American conference on soil mechanics and foundation engineering, vol 2. Brazil, pp 351–369

  • Davisson MT (1970) Lateral load capacity of piles. Highway. Research record no. 333, pp 104–112

  • Davisson MT, Robinson KE (1965) Bending and buckling of partially embedded piles. In: Proceedings of the 6th international conferences on soil mechanics and foundation engineering, vol 2, pp 243–246

  • Djoenaidi WJ (1985) A compendium of soil properties and correlations. M.S. thesis, University of Sydney, Sydney, Australia

  • Gabr MA, Wang JJ, Zhao M (1997) Buckling of piles with general power distribution of lateral subgrade reaction. J Geotech Geoenviron Eng 123(2):123–130

    Article  Google Scholar 

  • Golder HG, Skipp BO (1957) The buckling of piles in soft clay. In: Proceedings of the 4th international conference on soil mechanical and foundation engineering, pp 35–39

  • Gouvenot D (1975) Essais de chargement et de flambement de pieux aiguilles. Annales de l’Institut Technique du Batiment et des Travaux Publics, vol 334, pp 25–39

  • Granholm H (1929) On the elastic stability of piles surrounded by a supporting medium. Ingeniors Vetenskaps Akademien Handlingar No. 89, Stockholm, Sweden, pp 1–56

  • Heelis ME, Pavlovic MN, West RP (2004) The analytical prediction of the buckling loads of fully and partially embedded piles. Geotechnique 54(6):363–373

    Article  Google Scholar 

  • Hetenyi M (1946) Beams on elastic foundations. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Hong JH, Chiew YM, Lu JY, Lai JS, Lin YB (2012) Case study: Houfeng Bridge failure in Taiwan. J Hydraul Eng 138(2):186–199

    Article  Google Scholar 

  • Hughes D, Ramey GE, Hughes ML (2007) Effects of extreme scour and soil subgrade modulus on bridge pile bent buckling. Pract Period Struct Des Constr 12(2):96–108

    Article  Google Scholar 

  • Kulhawy FH, Mayne PW (1990) Manual on estimating soil properties for foundation design. Report no. EL-6800, Electric Power Research Institute, Palo Alto, CA

  • Lin C, Bennett C, Han J, Parsons RL (2010) Scour effects on the response of laterally loaded piles considering stress history of sand. Comput Geotech 37(7–8):1008–1014

    Article  Google Scholar 

  • Lin C, Bennett C, Han J, Parsons RL (2012) Integrated analysis of the performance of pile-supported bridges under scoured conditions. Eng Struct 36:27–38

    Article  Google Scholar 

  • Lin C, Han J, Bennett C, Parsons RL (2014) Technical note: behavior of laterally loaded piles under scour conditions considering the stress history of undrained soft clay. J Geotech Geoenviron Eng. doi:10.1061/(ASCE)GT.1943-5606.0001112

    Google Scholar 

  • Matlock H (1970) Correlation for design of laterally loaded piles in soft clay. In: Proceedings of the 2nd annual offshore technology conference. American Institute of Mining, Metallurgical, and Petroleum Engineers, Houston, pp 277–594

  • Mayne PW, Kulhawy FH (1982) K o-OCR relationship in soils. J Geotech Eng Div 108(6):851–872

    Google Scholar 

  • Muir Wood D (1990) Soil behavior and critical state soil mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Poulos HG, Davis EH (1980) Pile foundation analysis and design. Wiley, New York

    Google Scholar 

  • Prakash S (1987) Buckling loads of fully embedded piles. Int J Comput Geotech 4:61–83

    Article  Google Scholar 

  • Reddy AS, Valsangkar AJ (1970) Buckling of fully and partially embedded piles. J Soil Mech Found Div 96(6):1951–1965

    Google Scholar 

  • Reese LC, Van Impe WF (2001) Single piles and pile groups under lateral loading. Balkema, Leiden

    Google Scholar 

  • Richardson EV, Davis SR (2001) Evaluating scour at bridges, 4th edn. Federal Highway Administration Hydraulic Engineering Circular No. 18, FHWA NHI 01-001

  • Schambeau ME, Ramey GE, Hughes ML, Kang J, Davidson JS (2014) Screening tool to assess adequacy of bridge timber pile bents during extreme scour events. Pract Period Struct Des Constr. doi:10.1061/(ASCE)SC.1943-5576.0000199

    Google Scholar 

  • Su CC, Lu JY (2013) Measurements and prediction of typhoon-induced short-term general scours in intermittent rivers. Nat Hazards 66:671–687. doi:10.1007/s11069-012-0509-6

    Article  Google Scholar 

  • Terzaghi K (1955) Evaluation of coefficient of subgrade reaction. Geotechnique 5(4):297–326

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 41172246), and National Key Basic Research Program of China (973 Program, Grant No. 2013CB036304). Financial support from these organizations is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayun Liang.

Appendices

Appendix 1

For a pinned top-free tip boundary condition, the coefficient determinant is expressed as:

$$\Delta = \left| {\begin{array}{*{20}c} {b_{1,1} - {P \mathord{\left/ {\vphantom {P L}} \right. \kern-0pt} L}} & {b_{1,2} } & {b_{1,3} } & \cdots & {b_{1,n} } \\ {b_{2,1} } & {b_{2,2} - {{\pi^{2} P} \mathord{\left/ {\vphantom {{\pi^{2} P} {2L}}} \right. \kern-0pt} {2L}}} & {b_{2,3} } & \cdots & {b_{2,n} } \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ {b_{n,1} } & {b_{n,2} } & {b_{n,3} } & \cdots & {b_{n,n} - {{(n - 1)^{2} \pi^{2} P} \mathord{\left/ {\vphantom {{(n - 1)^{2} \pi^{2} P} {2L}}} \right. \kern-0pt} {2L}}} \\ \end{array} } \right| = 0$$
(A1)

where b i,j are the intermediate parameters for calculation and can further be described as:

$$b_{1,1} = \sum\limits_{i = 1}^{m} {\int\limits_{{h_{i - 1} }}^{{h_{i} }} {k_{i} \left( {1 - \frac{z}{L}} \right)}^{2} } {\text{d}}z$$
(A2)
$$b_{1,jj} = b_{jj,1} = \sum\limits_{i = 1}^{m} {\int\limits_{{h_{i - 1} }}^{{h_{i} }} {k_{i} \left( {1 - \frac{z}{L}} \right)} } \sin \frac{(jj - 1)\pi z}{L}{\text{d}}z\quad (jj = 2, \ldots ,\, n)$$
(A3)
$$b_{ii,jj} = \frac{{(jj - 1)^{4} {\text{EI}}\pi^{4} }}{{2L^{3} }} + \sum\limits_{i = 1}^{m} {\int\limits_{{h_{i - 1} }}^{{h_{i} }} {k_{i} \sin \frac{(ii - 1)\pi z}{L}} } \, \sin \frac{(jj - 1)\pi z}{L}{\text{d}}z\quad (ii = jj = 2, \ldots ,\,n)$$
(A4)
$$b_{ii,jj} = \sum\limits_{i = 1}^{m} {\int\limits_{{h_{i - 1} }}^{{h_{i} }} {k_{i} \sin \frac{(ii - 1)\pi z}{L}} } \, \sin \frac{(jj - 1)\pi z}{L}{\text{d}}z\quad (ii = 2, \ldots ,\,n) \, (jj = 2, \ldots ,\,n)$$
(A5)

For a fixed top-free tip boundary condition, the coefficient determinant is expressed as:

$$\Delta = \left| {\begin{array}{*{20}c} {b_{1,1} - {{\pi^{2} P} \mathord{\left/ {\vphantom {{\pi^{2} P} {8L}}} \right. \kern-0pt} {8L}}} & {b_{1,2} } & {b_{1,3} } & \cdots & {b_{1,n} } \\ {b_{2,1} } & {b_{2,2} - {{9\pi^{2} P} \mathord{\left/ {\vphantom {{9\pi^{2} P} {8L}}} \right. \kern-0pt} {8L}}} & {b_{2,3} } & \cdots & {b_{2,n} } \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ {b_{n,1} } & {b_{n,2} } & {b_{n,3} } & \cdots & {b_{n,n} - {{(2n - 1)^{2} \pi^{2} P} \mathord{\left/ {\vphantom {{(2n - 1)^{2} \pi^{2} P} {8L}}} \right. \kern-0pt} {8L}}} \\ \end{array} } \right| = 0$$
(A6)

where b i,j are the intermediate parameters for calculation and can further be described as:

$$b_{ii,jj} = \frac{{(2jj - 1)^{4} {\text{EI}}\pi^{4} }}{{32L^{3} }} + \sum\limits_{i = 1}^{m} {\int\limits_{{h_{i - 1} }}^{{h_{i} }} {k_{i} \left( {1 - \cos \frac{(2ii - 1)\pi (L - z)}{2L}} \right)} } \left( {1 - \cos \frac{(2jj - 1)\pi (L - z)}{2L}} \right){\text{d}}z\quad (ii = jj = 1, \ldots ,n)$$
(A7)
$$b_{ii,jj} = \sum\limits_{i = 1}^{m} {\int\limits_{{h_{i - 1} }}^{{h_{i} }} {k_{i} \left( {1 - \cos \frac{(2ii - 1)\pi (L - z)}{2L}} \right)} } \left( {1 - \cos \frac{(2jj - 1)\pi (L - z)}{2L}} \right){\text{d}}z\quad (ii = 1, \ldots ,n) \, (jj = 1, \ldots ,n)$$
(A8)

For a fixed-sway top-free tip boundary condition, the coefficient determinant is expressed as:

$$\Delta { = }\left| {\begin{array}{*{20}c} {b_{1,1} } & {b_{1,2} } & {b_{1,3} } & \cdots & {b_{1,n} } \\ {b_{2,1} } & {b_{2,2} - {{\pi^{2} P} \mathord{\left/ {\vphantom {{\pi^{2} P} {8L}}} \right. \kern-0pt} {8L}}} & {b_{2,3} } & \cdots & {b_{2,n} } \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ {b_{n,1} } & {b_{n,2} } & {b_{n,3} } & \cdots & {b_{n,n} - {{(2n - 3)^{2} \pi^{2} P} \mathord{\left/ {\vphantom {{(2n - 3)^{2} \pi^{2} P} {8L}}} \right. \kern-0pt} {8L}}} \\ \end{array} } \right| = 0$$
(A9)

where b i,j are the intermediate parameters for calculation and can further be described as:

$$b_{1,1} = \sum\limits_{i = 1}^{m} {\int\limits_{{h_{i - 1} }}^{{h_{i} }} {k_{i} } } {\text{d}}z$$
(A10)
$$b_{1,jj} = b_{jj,1} = \sum\limits_{i = 1}^{m} {\int\limits_{{h_{i - 1} }}^{{h_{i} }} {k_{i} } } \, \sin \frac{(2jj - 3)\pi z}{2L}{\text{d}}z\quad (jj = 2, \ldots ,n)$$
(A11)
$$b_{ii,jj} = \frac{{(2jj - 3)^{4} {\text{EI}}\pi^{4} }}{{32L^{3} }} + \sum\limits_{i = 1}^{m} {\int\limits_{{h_{i - 1} }}^{{h_{i} }} {k_{i} \, \sin \frac{(2ii - 3)\pi z}{2L}} } \sin \frac{(2jj - 3)\pi z}{2L}{\text{d}}z\quad (ii = jj = 2, \ldots , \, n)$$
(A12)
$$b_{ii,jj} = \sum\limits_{i = 1}^{m} {\int\limits_{{h_{i - 1} }}^{{h_{i} }} {k_{i} \sin \frac{(2ii - 3)\pi z}{2L}} } \sin \frac{(2jj - 3)\pi z}{2L}{\text{d}}z\quad (ii = 2, \ldots ,n) \, (jj = 2, \ldots , \, n)$$
(A13)

Appendix 2

The deflection function for the pinned top-pinned tip boundary condition is given as:

$$y = \sum\limits_{n = 1}^{\infty } {c_{n} } \sin \frac{n\pi }{L}z$$
(B1)

where c n is the unknown constant.

Similarly, for the buckling load of a pile in a homogeneous soil with pinned top-pinned tip boundary condition, the coefficient determinant is expressed as follows:

$$\Delta { = }\left| {\begin{array}{*{20}c} {b_{1,1} - {{\pi^{2} P} \mathord{\left/ {\vphantom {{\pi^{2} P} {2L}}} \right. \kern-0pt} {2L}}} & {b_{1,2} } & {b_{1,3} } & \cdots & {b_{1,n} } \\ {b_{2,1} } & {b_{2,2} - {{4\pi^{2} P} \mathord{\left/ {\vphantom {{4\pi^{2} P} {2L}}} \right. \kern-0pt} {2L}}} & {b_{2,3} } & \cdots & {b_{2,n} } \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ {b_{n,1} } & {b_{n,2} } & {b_{n,3} } & \cdots & {b_{n,n} - {{n^{2} \pi^{2} P} \mathord{\left/ {\vphantom {{n^{2} \pi^{2} P} {2L}}} \right. \kern-0pt} {2L}}} \\ \end{array} } \right| = 0$$
(B2)

where b i,j are the intermediate parameters for calculation and can further be described as:

$$b_{ii,jj} = \frac{{jj^{4} \, {\text{EI}}\pi^{4} }}{{2L^{3} }} + \frac{Lk}{2}\quad \left( {ii = jj = 1, \ldots ,n} \right)$$
(B3)
$$b_{ii,jj} = 0\quad \left( {ii = 1, \ldots ,n} \right)\quad \left( {jj = 1, \ldots ,n} \right)$$
(B4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Zhang, H. & Huang, M. Extreme scour effects on the buckling of bridge piles considering the stress history of soft clay. Nat Hazards 77, 1143–1159 (2015). https://doi.org/10.1007/s11069-015-1647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1647-4

Keywords

Navigation