Skip to main content
Log in

Combined Route Choice and Adaptive Traffic Control in a Day-to-day Dynamical System

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

We formulate a joint dynamical traffic system that encompasses both route choice and traffic control in which the signal controller interacts with and adapts to the route choices of travelers, and vice versa. Travelers’ route choice dynamics are captured by a recurrence function, which governs the system evolution from day to day. Traffic control also adjusts its plan from day to day in response to the route choices of travelers. We show that this joint dynamical system has a set of fixed points in which both the user equilibrium is achieved and the traffic signal converges to a fixed-time plan. We address equilibrium stability and convergence of this joint dynamical system through analyzing the Jacobian matrix associated with each fixed point. We demonstrate the attraction domains of this joint problem and illustrate their importance and relevance for designing adaptive traffic control through some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allsop RE (1971) Delay-minimizing settings for fixed-time traffic signals at a single road junction. IMA J Appl Math 8:164–185

    Article  MathSciNet  Google Scholar 

  • Bentley RW, Lambe TA (1980) Assignment of traffic to a network of signalized city streets. Transp Res A Gen 14:57–65

    Article  Google Scholar 

  • Bernstein D (1990) Programmability of continuous and discrete network equilibria. University of Pennsylvania, Philadelphia

    Google Scholar 

  • Bie J, Lo HK (2010) Stability and attraction domains of traffic equilibria in a day-to-day dynamical system formulation. Transp Res B Methodol 44:90–107

    Article  Google Scholar 

  • Cantarella GE, Cascetta E (1995) Dynamic processes and equilibrium in transportation networks: towards a unifying theory. Transp Sci 29:305–329

    Article  MATH  Google Scholar 

  • Chow AHF, Lo HK (2007) Sensitivity analysis of signal control with physical queuing: delay derivatives and an application. Transp Res B Methodol 41:462–477

    Article  Google Scholar 

  • Cook PA (1986) Nonlinear dynamical systems. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  • Friesz TL, Bernstein D, Smith TE, Tobin RL, Wie BW (1993) A variational inequality formulation of the dynamic network user equilibrium problem. Oper Res 41:179–191

    Article  MathSciNet  MATH  Google Scholar 

  • Friesz TL, Bernstein D, Mehta NJ, Tobin RL, Ganjalizadeh S (1994) Day-to-day dynamic network disequilibrium and idealized traveler information systems. Oper Res 42:1120–1136

    Article  MathSciNet  MATH  Google Scholar 

  • Gao S, Huang H (2012) Real-time traveler information for optimal adaptive routing in stochastic time-dependent networks. Transp Res C Emerg Technol 21:196–213

    Article  MathSciNet  Google Scholar 

  • Gartner NH, Al-Malik M (1996) A combined model for signal control and route choice in urban networks. Transp Res Rec 1554:27–35

    Article  Google Scholar 

  • Horowitz JL (1984) The stability of stochastic equilibrium in a two-link transportation network. Transp Res B Methodol 18:13–28

    Article  Google Scholar 

  • Iryo T (2013) Properties of dynamic user equilibrium solution: existence, uniqueness, stability, and robust solution methodology. Transportmetrica B Transp Dyn 1(1):52–67

    Article  Google Scholar 

  • Lam WHK, Huang H (1995) Dynamic user optimal traffic assignment model for many to one travel demand. Transp Res B Methodol 29:243–259

    Article  Google Scholar 

  • Lefeber E, Rooda JE (2006) Controller design for switched linear systems with setups. Phys A Stat Mech Appl 363:48–61

    Article  Google Scholar 

  • Lin W, Lo HK, Xiao L (2011) A quasi-dynamic robust control scheme for signalized intersections. J Intell Transp Syst 15(4):223–233

    Article  Google Scholar 

  • Liu H, Balke KN, Lin W (2008) A reverse causal-effect modeling approach for signal control of an oversaturated intersection. Transp Res C Emerg Technol 16:742–754

    Article  Google Scholar 

  • Lo HK (1999a) A dynamic traffic assignment formulation that encapsulates the cell-transmission model. 14th Int Symp Transp Traffic Theory pp. 327–350.

  • Lo HK (1999b) A novel traffic signal control formulation. Transp Res A Policy Pract 33:433–448

    Article  Google Scholar 

  • Lo HK (2001) A cell-based traffic control formulation: strategies and benefits of dynamic timing plans. Transp Sci 35:148–164

    Article  MATH  Google Scholar 

  • Lo HK, Bie J (2006) Stability domains of traffic equilibrium: directing traffic system evolution to equilibrium. The First Int Symp Dyn Traffic Assignment (DTA) Leeds 21–23 June 2006.

  • Lo HK, Chow AHF (2004) Control strategies for oversaturated traffic. J Transp Eng 130:466–478

    Article  Google Scholar 

  • Lo HK, Szeto WY (2002) A cell-based variational inequality formulation of the dynamic user optimal assignment problem. Transp Res B Methodol 36:421–443

    Article  Google Scholar 

  • Mahmassani H, Liu YH (1999) Dynamics of commuting decision behaviour under advanced traveller information systems. Transp Res C Emerg Technol 7:91–107

    Article  Google Scholar 

  • Meneguzzer C (1997) Review of models combining traffic assignment and signal control. J Transp Eng 123:148–155

    Article  Google Scholar 

  • Murat YS, Gedizlioglu E (2005) A fuzzy logic multi-phased signal control model for isolated junctions. Transp Res C Emerg Technol 13:19–36

    Article  Google Scholar 

  • Newell GF (1989) Theory of highway traffic signals. Institute of transportation studies, course notes. University of California, Berkeley

    Google Scholar 

  • Ran B, Boyce DE (1996) A link-based variational inequality formulation of ideal dynamic user-optimal route choice problem. Transp Res C Emerg Technol 4:1–12

    Article  Google Scholar 

  • Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall, Inc., New Jersey

    Google Scholar 

  • Smith MJ (1984) The stability of a dynamic model of traffic assignment—an application of a method of lyapunov. Transp Sci 18:245–252

    Article  ADS  Google Scholar 

  • Smith M, Mounce R (2011) A splitting rate model of traffic re-routeing and traffic control. Transp Res B Methodol 45:1389–1409

    Article  Google Scholar 

  • Smith MJ, van Vuren T (1993) Traffic equilibrium with responsive traffic control. Transp Sci 27:118–132

    Article  MATH  Google Scholar 

  • Szeto WY, Lo HK (2004) A cell-based simultaneous route and departure time choice model with elastic demand. Transp Res B Methodol 38:593–612

    Article  Google Scholar 

  • Van Vuren TV, Van Vliet DV (1992) Route choice and signal control: the potential for integrated route guidance. Avebury.

  • Wardrop JG (1952) Some theoretical aspects of road traffic research. Proc Inst Civ Eng Part II pp. 325–378.

  • Watling D (1999) Stability of the stochastic equilibrium assignment problem: a dynamical systems approach. Transp Res B Methodol 33:281–312

    Article  Google Scholar 

  • Watling DP, Cantarella GE (2013) Modelling sources of variation in transportation systems: theoretical foundations of day-to-day dynamic models. Transportmetrica B Transp Dyn 1(1):3–32

    Article  Google Scholar 

  • Watling D, Hazelton ML (2003) The dynamics and equilibria of day-to-day assignment models. Networks Spat Econ 3:349–370

    Article  Google Scholar 

  • Webster FV (1958) Traffic signal settings. Road Res Tech Pap 39.

  • Yang H (1996) Equilibrium network traffic signal setting under conditions of queuing and congestion. Appl Adv Technol Transp Eng pp. 578–582.

  • Yang H, Yagar S (1995) Traffic assignment and signal control in saturated road networks. Transp Res A Policy Pract 29:125–139

    Article  CAS  Google Scholar 

  • Zhu S, Levinson D, Liu HX, Harder K (2010) The traffic and behavioral effects of the I-35 W Mississippi River bridge collapse. Transp Res A Policy Pract 44:771–784

    Article  Google Scholar 

Download references

Acknowledgments

This study is sponsored by the Special Research Funding Initiative #SRFI11EG15, and General Research Fund, #617209 and #615712 of the Hong Kong Research Grants Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong K. Lo.

Appendixes

Appendixes

1.1 Appendix 1 The Recurrence Functions for the Joint Dynamical Traffic System

The dynamical traffic system is expressed as x n = y(x n−1), or equivalently:

$$ \begin{array}{l}\begin{array}{l}{f}_1^n={y}_1\left({\mathbf{x}}^{n-1}\right)= D/\left(1+{e}^{C_1-{C}_2}+{e}^{C_1-{C}_3}\right)\hfill \\ {}{f}_2^n={y}_2\left({\mathbf{x}}^{n-1}\right)= D/\left(1+{e}^{C_2-{C}_1}+{e}^{C_2-{C}_3}\right)\hfill \\ {}{f}_3^n={y}_3\left({\mathbf{x}}^{n-1}\right)= D/\left(1+{e}^{C_3-{C}_1}+{e}^{C_3-{C}_2}\right)\hfill \\ {}{g}_1^n={y}_4\left({\mathbf{x}}^{n-1}\right)=\left( S- L\right){f}_1{\mu}_1^{-1}/\left({f}_1{\mu}_1^{-1}+{f}_2{\mu}_2^{-1}+{f}_3{\mu}_3^{-1}\right)\hfill \\ {}{g}_2^n={y}_5\left({\mathbf{x}}^{n-1}\right)=\left( S- L\right){f}_2{\mu}_2^{-1}/\left({f}_1{\mu}_1^{-1}+{f}_2{\mu}_2^{-1}+{f}_3{\mu}_3^{-1}\right)\hfill \\ {}{g}_3^n={y}_6\left({\mathbf{x}}^{n-1}\right)=\left( S- L\right){f}_3{\mu}_3^{-1}/\left({f}_1{\mu}_1^{-1}+{f}_2{\mu}_2^{-1}+{f}_3{\mu}_3^{-1}\right)\hfill \\ {}{C}_1^n={y}_7\left({\mathbf{x}}^{n-1}\right)=\left({f}_1+3{f}_2+1\right)+ k{\left( S-{g}_1\right)}^2{\mu}_1/\left( S\left({\mu}_1-{f}_1\right)\right)\hfill \\ {}{C}_2^n={y}_8\left({\mathbf{x}}^{n-1}\right)=\left(2{f}_1+{f}_2+2\right)+ k{\left( S-{g}_2\right)}^2{\mu}_2/\left( S\left({\mu}_2-{f}_2\right)\right)\hfill \\ {}{C}_3^n={y}_9\left({\mathbf{x}}^{n-1}\right)=\left({f}_3+1\right)+ k{\left( S-{g}_3\right)}^2{\mu}_3/\left( S\left({\mu}_3-{f}_3\right)\right)\hfill \end{array}\\ {}\end{array} $$

where we simplify x n−1 as [f 1, f 2, f 3, g 1, g 2, g 3, C 1, C 2, C 3] and set constant k to be 1/250.

1.2 Appendix 2 The Jacobian Matrix of the Joint Dynamical Traffic System

The Jacobian matrix of the dynamical system in this example is:

 

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {C}_1$}\right. \)

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {C}_2$}\right. \)

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {C}_3$}\right. \)

y 1(x n−1)

\( -{e}^{-{C}_1}\left({e}^{-{C}_2}+{e}^{-{C}_3}\right){\varDelta}_1 \)

\( {e}^{-{C}_1}{e}^{-{C}_2}{\varDelta}_1 \)

\( {e}^{-{C}_1}{e}^{-{C}_3}{\varDelta}_1 \)

y 2(x n−1)

\( {e}^{-{C}_1}{e}^{-{C}_2}{\varDelta}_1 \)

\( -{e}^{-{C}_2}\left({e}^{-{C}_1}+{e}^{-{C}_3}\right){\varDelta}_1 \)

\( {e}^{-{C}_2}{e}^{-{C}_3}{\varDelta}_1 \)

y 3(x n−1)

\( {e}^{-{C}_1}{e}^{-{C}_3}{\varDelta}_1 \)

\( {e}^{-{C}_2}{e}^{-{C}_3}{\varDelta}_1 \)

\( -{e}^{-{C}_3}\left({e}^{-{C}_1}+{e}^{-{C}_2}\right){\varDelta}_1 \)

 

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {f}_1$}\right. \)

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {f}_2$}\right. \)

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {f}_3$}\right. \)

y 4(x n−1)

\( \frac{\varDelta_2}{\mu_1}\left({f}_2{\mu}_2^{-1}+{f}_3{\mu}_3^{-1}\right) \)

− Δ 2(μ 1 μ 2)− 1 f 1

− Δ 2(μ 1 μ 3)− 1 f

y 5(x n−1)

− Δ 2(μ 1 μ 2)− 1 f 2

\( \frac{\varDelta_2}{\mu_2}\left({f}_1{\mu}_1^{-1}+{f}_3{\mu}_3^{-1}\right) \)

− Δ 2(μ 2 μ 3)− 1 f 2

y 6(x n−1)

− Δ 2(μ 1 μ 3)− 1 f 3

− Δ 2(μ 2 μ 3)− 1 f 3

\( \frac{\varDelta_2}{\mu_3}\left({f}_1{\mu}_1^{-1}+{f}_2{\mu}_2^{-1}\right) \)

 

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {f}_1$}\right. \)

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {f}_2$}\right. \)

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {f}_3$}\right. \)

y 7(xn−1)

\( 1+ k\frac{{\left( S-{g}_1\right)}^2{\mu}_1}{S{\left({\mu}_1-{f}_1\right)}^2} \)

3

0

y 8(xn−1)

2

\( 1+ k\frac{{\left( S-{g}_2\right)}^2{\mu}_2}{S{\left({\mu}_2-{f}_2\right)}^2} \)

0

y 9(xn−1)

0

0

\( 1+ k\frac{{\left( S-{g}_3\right)}^2{\mu}_3}{S{\left({\mu}_3-{f}_3\right)}^2} \)

 

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {g}_1$}\right. \)

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {g}_2$}\right. \)

\( \raisebox{1ex}{$\partial $}\!\left/ \!\raisebox{-1ex}{$\partial {g}_3$}\right. \)

y 7(xn−1)

\( \frac{-2 k\left( S-{g}_1\right){\mu}_1}{S\left({\mu}_1-{f}_1\right)} \)

0

0

y 8(xn−1)

0

\( \frac{-2 k\left( S-{g}_2\right){\mu}_2}{S\left({\mu}_2-{f}_2\right)} \)

0

y 9(xn−1)

0

0

\( \frac{-2 k\left( S-{g}_3\right){\mu}_3}{S\left({\mu}_3-{f}_3\right)} \)

where \( {\varDelta}_1=\frac{D}{{\left({e}^{-{C}_1}+{e}^{-{C}_2}+{e}^{-{C}_3}\right)}^2} \) and \( {\varDelta}_2=\frac{S- L}{{\left({f}_1{\mu}_1^{-1}+{f}_2{\mu}_2^{-1}+{f}_3{\mu}_3^{-1}\right)}^2} \). All other entries are 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Lo, H.K. Combined Route Choice and Adaptive Traffic Control in a Day-to-day Dynamical System. Netw Spat Econ 15, 697–717 (2015). https://doi.org/10.1007/s11067-014-9248-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-014-9248-4

Keywords

Navigation