Skip to main content
Log in

A Systematic Review of Studies Reporting Data-Driven Cognitive Subtypes across the Psychosis Spectrum

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

The delineation of cognitive subtypes of schizophrenia and bipolar disorder may offer a means of determining shared genetic markers and neuropathology among individuals with these conditions. We systematically reviewed the evidence from published studies reporting the use of data-driven (i.e., unsupervised) clustering methods to delineate cognitive subtypes among adults diagnosed with schizophrenia, schizoaffective disorder, or bipolar disorder. We reviewed 24 studies in total, contributing data to 13 analyses of schizophrenia spectrum patients, 8 analyses of bipolar disorder, and 5 analyses of mixed samples of schizophrenia and bipolar disorder participants. Studies of bipolar disorder most consistently revealed a 3-cluster solution, comprising a subgroup with ‘near-normal’ (cognitively spared) cognition and two other subgroups demonstrating graded deficits across cognitive domains. In contrast, there was no clear consensus regarding the number of cognitive subtypes among studies of cognitive subtypes in schizophrenia, while four of the five studies of mixed diagnostic groups reported a 4-cluster solution. Common to all cluster solutions was a severe cognitive deficit subtype with cognitive impairments of moderate to large effect size relative to healthy controls. Our review highlights several key factors (e.g., symptom profile, sample size, statistical procedures, and cognitive domains examined) that may influence the results of data-driven clustering methods, and which were largely inconsistent across the studies reviewed. This synthesis of findings suggests caution should be exercised when interpreting the utility of particular cognitive subtypes for biological investigation, and demonstrates much heterogeneity among studies using unsupervised clustering approaches to cognitive subtyping within and across the psychosis spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bechi, M., Spangaro, M., Agostoni, G., Bosinelli, F., Buonocore, M., Bianchi, L., et al. (2019). Intellectual and cognitive profiles in patients affected by schizophrenia. J Neuropsychol, 13, 589–602.

  • Bora, E., Hidiroglu, C., Ozerdem, A., Kacar, O. F., Sarisoy, G., Civil Arslan, F., et al. (2016). Executive dysfunction and cognitive subgroups in a large sample of euthymic patients with bipolar disorder. European Neuropsychopharmacology, 26(8), 1338–1347.

    CAS  PubMed  Google Scholar 

  • Bora, E., Veznedaroglu, B., & Vahip, S. (2016). Theory of mind and executive functions in schizophrenia and bipolar disorder: A cross-diagnostic latent class analysis for identification of neuropsychological subtypes. Schizophrenia Research, 176(2–3), 500–505.

    PubMed  Google Scholar 

  • Bora, E., Yucel, M., & Pantelis, C. (2009a). Theory of mind impairment: A distinct trait-marker for schizophrenia spectrum disorders and bipolar disorder? Acta Psychiatrica Scandinavica, 120(4), 253–264.

    CAS  PubMed  Google Scholar 

  • Bora, E., Yucel, M., & Pantelis, C. (2009b). Theory of mind impairment in schizophrenia: Meta-analysis. Schizophrenia Research, 109(1–3), 1–9.

    PubMed  Google Scholar 

  • Bora, E., Yucel, M., & Pantelis, C. (2009c). Cognitive endophenotypes of bipolar disorder: A meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. Journal of Affective Disorders, 113(1–2), 1–20.

    PubMed  Google Scholar 

  • Bora, E., Yucel, M., & Pantelis, C. (2009d). Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses: Meta-analytic study. The British Journal of Psychiatry, 195(6), 475–482.

    PubMed  Google Scholar 

  • Burdick, K. E., Russo, M., Frangou, S., Mahon, K., Braga, R. J., Shanahan, M., & Malhotra, A. K. (2014). Empirical evidence for discrete neurocognitive subgroups in bipolar disorder: clinical implications. Psychological Medicine, 44(14), 3083–3096.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardno, A. G., Marshall, E. J., Coid, B., Macdonald, A. M., Ribchester, T. R., Davies, N. J., … Murray, R. M. (1999). Heritability estimates for psychotic disorders: The Maudsley twin psychosis series. Archives of General Psychiatry, 56(2), 162–168.

    CAS  PubMed  Google Scholar 

  • Cardno, A. G., & Owen, M. J. (2014). Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophrenia Bulletin, 40(3), 504–515.

    PubMed  PubMed Central  Google Scholar 

  • Clementz, B. A., Sweeney, J. A., Hamm, J. P., Ivleva, E. I., Ethridge, L. E., Pearlson, G. D., … Tamminga, C. A. (2016). Identification of distinct psychosis biotypes using brain-based biomarkers. The American Journal of Psychiatry, 173(4), 373–384.

    PubMed  Google Scholar 

  • Cotrena, C., Damiani Branco, L., Ponsoni, A., Milman Shansis, F., & Paz Fonseca, R. (2017). Neuropsychological clustering in bipolar and major depressive disorder. Journal of the International Neuropsychological Society, 23(7), 584–593.

    PubMed  Google Scholar 

  • Dawes, S. E., Jeste, D. V., & Palmer, B. W. (2011). Cognitive profiles in persons with chronic schizophrenia. Journal of Clinical and Experimental Neuropsychology, 33(8), 929–936.

    PubMed  PubMed Central  Google Scholar 

  • Gambini, O., Campana, A., Garghentini, G., & Scarone, S. (2003). No evidence of a homogeneous frontal neuropsychological profile in a sample of schizophrenic subjects. J Neuropsych Clin N, 15(1), 53–57.

    Google Scholar 

  • Gilbert, E., Merette, C., Jomphe, V., Emond, C., Rouleau, N., Bouchard, R. H., et al. (2014). Cluster analysis of cognitive deficits may mark heterogeneity in schizophrenia in terms of outcome and response to treatment. European Archives of Psychiatry and Clinical Neuroscience, 264(4), 333–343.

    PubMed  Google Scholar 

  • Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. The American Journal of Psychiatry, 160(4), 636–645.

    PubMed  Google Scholar 

  • Gould, I. C., Shepherd, A. M., Laurens, K. R., Cairns, M. J., Carr, V. J., & Green, M. J. (2014). Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: A support vector machine learning approach. Neuroimage Clin, 6, 229–236.

    PubMed  PubMed Central  Google Scholar 

  • Green, M. F., Kern, R. S., & Heaton, R. K. (2004). Longitudinal studies of cognition and functional outcome in schizophrenia: Implications for MATRICS. Schizophrenia Research, 72(1), 41–51.

    PubMed  Google Scholar 

  • Green, M. J., Cairns, M. J., Wu, J., Dragovic, M., Jablensky, A., Tooney, P. A., … Australian Schizophrenia Research Bank. (2013). Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Molecular Psychiatry, 18(7), 774–780.

    CAS  PubMed  Google Scholar 

  • Hall, M. H., Smoller, J. W., Cook, N. R., Schulze, K., Hyoun Lee, P., Taylor, G., … Levy, D. L. (2012). Patterns of deficits in brain function in bipolar disorder and schizophrenia: A cluster analytic study. Psychiatry Research, 200(2–3), 272–280.

    PubMed  PubMed Central  Google Scholar 

  • Hallmayer, J. F., Kalaydjieva, L., Badcock, J., Dragovic, M., Howell, S., Michie, P. T., … Jablensky, A. (2005). Genetic evidence for a distinct subtype of schizophrenia characterized by pervasive cognitive deficit. American Journal of Human Genetics, 77(3), 468–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heydebrand, G. (2006). Cognitive deficits in the families of patients with schizophrenia. Current Opinion in Psychiatry, 19(3), 277–281.

    PubMed  Google Scholar 

  • Hill, S. K., Ragland, J. D., Gur, R. C., & Gur, R. E. (2002). Neuropsychological profiles delineate distinct profiles of schizophrenia, an interaction between memory and executive function, and uneven distribution of clinical subtypes. Journal of Clinical and Experimental Neuropsychology, 24(6), 765–780.

    PubMed  PubMed Central  Google Scholar 

  • Hill, S. K., Reilly, J. L., Keefe, R. S., Gold, J. M., Bishop, J. R., Gershon, E. S., … Sweeney, J. A. (2013). Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: Findings from the bipolar-schizophrenia network on intermediate phenotypes (B-SNIP) study. The American Journal of Psychiatry, 170(11), 1275–1284.

    PubMed  PubMed Central  Google Scholar 

  • International Schizophrenia Consortium, Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748–752.

    PubMed Central  Google Scholar 

  • Ivleva, E. I., Bidesi, A. S., Thomas, B. P., Meda, S. A., Francis, A., Moates, A. F., … Tamminga, C. A. (2012). Brain gray matter phenotypes across the psychosis dimension. Psychiatry Research, 204(1), 13–24.

    PubMed  PubMed Central  Google Scholar 

  • Jensen, J. H., Knorr, U., Vinberg, M., Kessing, L. V., & Miskowiak, K. W. (2016). Discrete neurocognitive subgroups in fully or partially remitted bipolar disorder: Associations with functional abilities. Journal of Affective Disorders, 205, 378–386.

    PubMed  Google Scholar 

  • Jimenez, E., Sole, B., Arias, B., Mitjans, M., Varo, C., Reinares, M., et al. (2017). Impact of childhood trauma on cognitive profile in bipolar disorder. Bipolar Disorders, 19(5), 363–374.

    CAS  PubMed  Google Scholar 

  • Lee, J., Rizzo, S., Althuler, L., Glahn, D. C., Miklowitz, D. J., Sugar, C. A., et al. (2016). Deconstructing bipolar disorder and schizophrenia: A cross-diagnostic cluster analysis of cognitive phenotypes. Journal of Affective Disorders, 209, 71–79.

    PubMed  PubMed Central  Google Scholar 

  • Lewandowski, K. E., Baker, J. T., McCarthy, J. M., Norris, L. A., & Ongur, D. (2018). Reproducibility of cognitive profiles in psychosis using cluster analysis. Journal of the International Neuropsychological Society, 24(4), 382–390.

    PubMed  Google Scholar 

  • Lewandowski, K. E., Sperry, S. H., Cohen, B. M., & Ongur, D. (2014). Cognitive variability in psychotic disorders: A cross-diagnostic cluster analysis. Psychological Medicine, 44(15), 3239–3248.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenstein, P., Yip, B. H., Bjork, C., Pawitan, Y., Cannon, T. D., Sullivan, P. F., et al. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet, 373(9659), 234–239.

    CAS  PubMed  Google Scholar 

  • Malhi, G. S., Green, M., Fagiolini, A., Peselow, E. D., & Kumari, V. (2008). Schizoaffective disorder: Diagnostic issues and future recommendations. Bipolar Disorders, 10(1 Pt 2), 215–230.

    PubMed  Google Scholar 

  • Morar, B., Dragovic, M., Waters, F. A. V., Chandler, D., Kalaydjieva, L., & Jablensky, A. (2011). Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition. Molecular Psychiatry, 16(8), 860–866.

    CAS  PubMed  Google Scholar 

  • Poorolajal, J., Cheraghi, Z., Irani, A. D., & Rezaeian, S. (2011). Quality of cohort studies reporting post the strengthening the reporting of observational studies in epidemiology (STROBE) statement. Epidemiology and Health, 33, 1–4.

    Google Scholar 

  • Rangel, A., Munoz, C., Ocampo, M. V., Quintero, C., Escobar, M., Botero, S., et al. (2015). Neurocognitive subtypes of schizophrenia. Actas Españolas de Psiquiatría, 43(3), 80–90.

    PubMed  Google Scholar 

  • Reichenberg, A., Harvey, P. D., Bowie, C. R., Mojtabai, R., Rabinowitz, J., Heaton, R. K., et al. (2009). Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. Schizophrenia Bulletin, 35(5), 1022–1029.

    PubMed  Google Scholar 

  • Reser, M. P., Allott, K. A., Killackey, E., Farhall, J., & Cotton, S. M. (2015). Exploring cognitive heterogeneity in first-episode psychosis: What cluster analysis can reveal. Psychiatry Research, 229(3), 819–827.

    PubMed  Google Scholar 

  • Rocca, P., Galderisi, S., Rossi, A., Bertolino, A., Rucci, P., Gibertoni, D., … Italian Network for Research on Psychoses. (2016). Social cognition in people with schizophrenia: A cluster-analytic approach. Psychological Medicine, 46(13), 2717–2729.

    CAS  PubMed  Google Scholar 

  • Roux, P., Raust, A., Cannavo, A. S., Aubin, V., Aouizerate, B., Azorin, J. M., et al. (2017). Cognitive profiles in euthymic patients with bipolar disorders: Results from the FACE-BD cohort. Bipolar Disorders, 19(2), 146–153.

    PubMed  Google Scholar 

  • Russo, M., Van Rheenen, T. E., Shanahan, M., Mahon, K., Perez-Rodriguez, M. M., Cuesta-Diaz, A., et al. (2017). Neurocognitive subtypes in patients with bipolar disorder and their unaffected siblings. Psychological Medicine, 47(16), 2892–2905.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd, A. M., Quide, Y., Laurens, K. R., O'Reilly, N., Rowland, J. E., Mitchell, P. B., et al. (2015). Shared intermediate phenotypes for schizophrenia and bipolar disorder: Neuroanatomical features of subtypes distinguished by executive dysfunction. Journal of Psychiatry & Neuroscience, 40(1), 58–68.

    Google Scholar 

  • Silver, H., & Shmoish, M. (2008). Analysis of cognitive performance in schizophrenia patients and healthy individuals with unsupervised clustering models. Psychiatry Research, 159(1–2), 167–179.

    PubMed  Google Scholar 

  • Sole, B., Jimenez, E., Torrent, C., Del Mar Bonnin, C., Torres, I., Reinares, M., et al. (2016). Cognitive variability in bipolar II disorder: Who is cognitively impaired and who is cognitively spared. Bipolar Disorders, 18(3), 288–299.

    PubMed  Google Scholar 

  • Tamminga, C. A., Ivleva, E. I., Keshavan, M. S., Pearlson, G. D., Clementz, B. A., Witte, B., et al. (2013). Clinical phenotypes of psychosis in the bipolar-schizophrenia network on intermediate phenotypes (B-SNIP). The American Journal of Psychiatry, 170(11), 1263–1274.

    PubMed  Google Scholar 

  • Tamminga, C. A., Pearlson, G., Keshavan, M., Sweeney, J., Clementz, B., & Thaker, G. (2014). Bipolar and schizophrenia network for intermediate phenotypes: Outcomes across the psychosis continuum. Schizophrenia Bulletin, 40(Suppl 2), S131–S137.

    PubMed  PubMed Central  Google Scholar 

  • Uren, J., Cotton, S. M., Killackey, E., Saling, M. M., & Allott, K. (2017). Cognitive clusters in first-episode psychosis: Overlap with healthy controls and relationship to concurrent and prospective symptoms and functioning. Neuropsychology, 31(7), 787–797.

    PubMed  Google Scholar 

  • Van Den Bogaert, A., Del-Favero, J., & Van Broeckhoven, C. (2006). Major affective disorders and schizophrenia: A common molecular signature? Human Mutation, 27(9), 833–853.

    Google Scholar 

  • Van Rheenen, T. E., Bryce, S., Tan, E. J., Neill, E., Gurvich, C., Louise, S., et al. (2016). Does cognitive performance map to categorical diagnoses of schizophrenia, schizoaffective disorder and bipolar disorder? A discriminant functions analysis. Journal of Affective Disorders, 192, 109–115.

    PubMed  Google Scholar 

  • Van Rheenen, T. E., Cropley, V., Zalesky, A., Bousman, C., Wells, R., Bruggemann, J., et al. (2018). Widespread volumetric reductions in schizophrenia and schizoaffective patients displaying compromised cognitive abilities. Schizophrenia Bulletin, 44(3), 560–574.

    PubMed  Google Scholar 

  • Van Rheenen, T. E., Lewandowski, K. E., Tan, E. J., Ospina, L. H., Ongur, D., Neill, E., et al. (2017). Characterizing cognitive heterogeneity on the schizophrenia-bipolar disorder spectrum. Psychological Medicine, 47(10), 1848–1864.

    PubMed  Google Scholar 

  • Von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., et al. (2007). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Medicine, 4(10), e296.

    Google Scholar 

  • Weickert, T. W., Goldberg, T. E., Gold, J. M., Bigelow, L. B., Egan, M. F., & Weinberger, D. R. (2000). Cognitive impairments in patients with schizophrenia displaying cognitively spared and compromised intellect. Archives of General Psychiatry, 57(9), 907–913.

    CAS  PubMed  Google Scholar 

  • Weinberg, D., Lenroot, R., Jacomb, I., Allen, K., Bruggemann, J., Wells, R., … Weickert, T. W. (2016). Cognitive subtypes of schizophrenia characterized by differential brain volumetric reductions and cognitive decline. JAMA Psychiatry, 73(12), 1251–1259.

    PubMed  Google Scholar 

  • Wells, R., Swaminathan, V., Sundram, S., Weinberg, D., Bruggemann, J., Jacomb, I., et al. (2015). The impact of premorbid and current intellect in schizophrenia: Cognitive, symptom, and functional outcomes. NPJ Schizophrenia, 1, 15043.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa J. Green.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, M.J., Girshkin, L., Kremerskothen, K. et al. A Systematic Review of Studies Reporting Data-Driven Cognitive Subtypes across the Psychosis Spectrum. Neuropsychol Rev 30, 446–460 (2020). https://doi.org/10.1007/s11065-019-09422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-019-09422-7

Keywords

Navigation