Skip to main content

Advertisement

Log in

Genetics and Functional Imaging: Effects of APOE, BDNF, COMT, and KIBRA in Aging

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Increasing evidence from cross-sectional and longitudinal molecular-genetic studies suggests that effects of common genetic variations on cognitive functioning increase with aging. We review the influence of candidate genes on brain functioning in old age, focusing on four genetic variations that have been extensively investigated: APOE, BDNF, COMT, and KIBRA. Similar to the behavioral evidence, there are reports from age-comparative studies documenting stronger genetic effects on measures of brain functioning in older adults compared to younger adults. This pattern suggests disproportionate impairments of neural processing among older individuals carrying disadvantageous genotypes. We discuss various factors, including gene-gene interactions, study population characteristics, lifestyle factors, and diseases, that need to be considered in future studies and may help understand inconsistent findings in the extant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamson, M. M., Benjamin Hutchinson, J., Shelton, A., Wagner, A. D., & Taylor, J. L. (2011). Reduced hippocampal activity during encoding in cognitively normal adults carrying the APOE ε4 allele. Neuropsychologia, 49(9), 2448–2455. doi:10.1016/j.neuropsychologia.2011.04.022.

    PubMed Central  PubMed  Google Scholar 

  • Almeida, O. P., Schwab, S. G., Lautenschlager, N. T., Morar, B., Greenop, K. R., Flicker, L., & Wildenauer, D. (2008). KIBRA genetic polymorphism influences episodic memory in later life, but does not increase the risk of mild cognitive impairment. Journal of Cellular and Molecular Medicine, 12(5A), 1672–1676. doi:10.1111/j.1582-4934.2008.00229.x.

    CAS  PubMed  Google Scholar 

  • Bäckman, L., Jones, S., Small, B. J., Agüero-Torres, H., & Fratiglioni, L. (2003). Rate of cognitive decline in preclinical Alzheimer’s disease: the role of comorbidity. Journals of Gerontology. Series B, Psychological, 58, 228–236. doi:10.1093/geronb/58.4.P228.

    Google Scholar 

  • Bäckman, L., Nyberg, L., Lindenberger, U., Li, S.-C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Reviews, 30(6), 791–807. doi:10.1016/j.neubiorev.2006.06.005.

    PubMed  Google Scholar 

  • Bäckman, L., Lindenberger, U., Li, S.-C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neuroscience & Biobehavioral Reviews, 34(5), 670–677. doi:10.1016/j.neubiorev.2006.06.005.

    Google Scholar 

  • Banner, H., Bhat, V., Etchamendy, N., Joober, R., & Bohbot, V. D. (2011). The brain-derived neurotrophic factor Val66Met polymorphism is associated with reduced functional magnetic resonance imaging activity in the hippocampus and increased use of caudate nucleus-dependent strategies in a human virtual navigation task. European Journal of Neuroscience, 33(5), 968–977. doi:10.1111/j.1460-9568.2010.07550.x.

    PubMed Central  PubMed  Google Scholar 

  • Barnett, J. H., Jones, P. B., Robbins, T. W., & Müller, U. (2007). Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: a meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Molecular Psychiatry, 12(5), 502–509.

    CAS  PubMed  Google Scholar 

  • Barnett, J. H., Scoriels, L., & Munafò, M. R. (2008). Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biological Psychiatry, 64(2), 137–144. doi:10.1016/j.biopsych.2008.01.005.

    CAS  PubMed  Google Scholar 

  • Bassett, S. S., Yousem, D. M., Cristinzio, C., Kusevic, I., Yassa, M. A., Caffo, B. S., & Zeger, S. L. (2006). Familial risk for Alzheimer’s disease alters fMRI activation patterns. Brain: A Journal of Neurology, 129(Pt 5), 1229–1239. doi:10.1093/brain/awl089.

    Google Scholar 

  • Binder, D. K., & Scharfman, H. E. (2004). Brain-derived neurotrophic factor. Growth Factors, 22(3), 123–131. doi:10.1080/08977190410001723308.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blacker, D., Haines, J. L., Rodes, L., Terwedow, H., Go, R., Harrell, L. E., & Tanzi, R. E. (1997). ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology, 48, 139–147. doi:10.1212/WNL.48.1.139.

    CAS  PubMed  Google Scholar 

  • Blanchard, M. M., Chamberlain, S. R., Roiser, J., Robbins, T. W., & Müller, U. (2011). Effects of two dopamine-modulating genes (DAT1 9/10 and COMT Val/Met) on n-back working memory performance in healthy volunteers. Psychological Medicine, 41(3), 611–618. doi:10.1017/S003329171000098X.

    CAS  PubMed  Google Scholar 

  • Bolton, J. L., Marioni, R. E., Deary, I. J., Harris, S. E., Stewart, M. C., Murray, G. D., & Price, J. F. (2010). Association between polymorphisms of the dopamine receptor D2 and catechol-o-methyl transferase genes and cognitive function. Behavioral Genetics, 40(5), 630–638. doi:10.1007/s10519-010-9372-y.

    Google Scholar 

  • Bondi, M. W., Houston, W. S., Eyler, L. T., & Brown, G. G. (2005). fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology, 64(3), 501–508. doi:10.1212/01.WNL.0000150885.00929.7E.

    PubMed Central  PubMed  Google Scholar 

  • Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S., Saunders, A. M., Pericak-Vance, M. A., Mazziotta, J. C., & Small, G. W. (2000). Patterns of brain activation in people at risk for Alzheimer’s disease. New England Journal of Medicine, 343(7), 450–456. doi:10.1056/NEJM200008173430701.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boyle, P. A., Buchman, A. S., Wilson, R. S., Kelly, J. F., & Bennett, D. A. (2010). The APOE ε4 allele is associated with incident mild cognitive impairment among community-dwelling older persons. Neuroepidemiology, 34(1), 43–49. doi:10.1159/000256662.

    PubMed Central  PubMed  Google Scholar 

  • Bretsky, P., Guralnik, J. M., Launer, L., Albert, M., & Seeman, T. E. (2003). The role of APOE- 4 in longitudinal cognitive decline: MacArthur Studies of Successful Aging. Neurology, 60(7), 1077–1081. doi:10.1212/01.wnl.0000055875.26908.24.

    CAS  PubMed  Google Scholar 

  • Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., & Mintun, M. A. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience, 25(34), 7709–7717. doi:10.1523/JNEUROSCI.2177-05.2005.

    CAS  PubMed  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. doi:10.1196/annals.1440.011.

    PubMed  Google Scholar 

  • Bunce, D., Fratiglioni, L., Small, B. J., Winblad, B., & Bäckman, L. (2004). APOE and cognitive decline in preclinical Alzheimer’s disease and non-demented aging. Neurology, 63, 816–821. doi:10.1212/01.WNL.0000137041.86153.42.

    CAS  PubMed  Google Scholar 

  • Burzynska, A. Z., Nagel, I. E., Preuschhof, C., Li, S. C., Lindenberger, U., Backman, L., & Heekeren, H. R. (2011). Microstructure of frontoparietal connections predicts cortical responsivity and working memory performance. Cerebral Cortex, 21(10), 2261–2271. doi:10.1093/cercor/bhq293.

    CAS  PubMed  Google Scholar 

  • Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2006). Age differences in DLPFC recruitment during verbal working memory maintenance depend on memory load. Paper presented at the Society for Neuroscience, Atlanta, GA.

  • Ceaser, A., Csernansky, J. G., & Barch, D. M. (2013). COMT influences on prefrontal and striatal blood oxygenation level-dependent responses during working memory among individuals with schizophrenia, their siblings, and healthy controls. Cognitive Neuropsychiatry, 18(4), 257–283. doi:10.1080/13546805.2012.698100.

    PubMed  Google Scholar 

  • Cohen, R. M., Small, C., Lalonde, F., Friz, J., & Sunderland, T. (2001). Effect of apolipoprotein E genotype on hippocampal volume loss in aging healthy women. Neurology, 57, 2223–e2228. doi:10.1212/WNL.57.12.2223.

    CAS  PubMed  Google Scholar 

  • Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Rimmler J. B., … Haines J. L. (1995). Apolipoprotein E, survival in Alzheimer’s disease patients, and the competing risks of death and Alzheimer’s disease. Neurology, 45, 1323–1328. doi:10.1212/WNL.45.7.1323.

  • Crivello, F., Lemaitre, H., Dufouil, C., Grassiot, B., Delcroix, N., Tzourio-Mazoyer, N., Tzourio, C., & Mazoyer, B. (2010). Effects of ApoE-epsilon4 allele load and age on the rates of grey matter and hippocampal volumes loss in a longitudinal cohort of 1186 healthy elderly persons. NeuroImage, 53, 1064–e1069. doi:10.1016/j.neuroimage.2009.

    CAS  PubMed  Google Scholar 

  • Das, D., Tan, X., Bielak, A. A., Cherbuin, N., Easteal, S., & Anstey, K. J. (2014). Cognitive ability, intraindividual variability, and common genetic variants of catechol-O-methyltransferase and brain-derived neurotrophic factor: a longitudinal study in a population-based sample of older adults. Psychology and Aging, 29(2), 393–403. doi:10.1037/a0035702.

    PubMed  Google Scholar 

  • de Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., & Nilsson, L. G. (2005). Catechol O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults. Journal of Cognitive Neuroscience, 17(7), 1018–1025. doi:10.1162/0898929054475136.

    PubMed  Google Scholar 

  • de Frias, C. M., Lövdén, M., Lindenberger, U., & Nilsson, L.-G. (2007). Revisiting the dedifferentiation hypothesis with longitudinal multi-cohort data. Intelligence, 35(4), 381–392. doi:10.1016/j.intell.2006.07.011.

    Google Scholar 

  • Deary, I. J., Spinath, F. M., & Bates, T. C. (2006). Genetics of intelligence. European Journal of Human Genetics, 14, 690–700. doi:10.1038/sj.ejhg.5201588.

    CAS  PubMed  Google Scholar 

  • Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Review Neuroscience, 11(3), 201–211. doi:10.1038/nrn2793.

    CAS  Google Scholar 

  • Dennis, N. A., Browndyke, J. N., Stokes, J., Need, A., Burke, J. R., Welsh-Bohmer, K. A., & Cabeza, R. (2010). Temporal lobe functional activity and connectivity in young adult APOE varepsilon4 carriers. Alzheimers Dement, 6, 303–311. doi:10.1016/j.jalz.2009.07.003.

    PubMed Central  PubMed  Google Scholar 

  • Dickie, E. W., Tahmasebi, A., French, L., Kovacevic, N., Banaschewski, T., Barker, G. J., …, & Paus, T. (2014). Global genetic variations predict brain response to faces. PLoS Genet, 10(8), e1004523. doi:10.1371/journal.pgen.1004523.

  • Dik, M. G., Deeg, D. J. H., Bouter, L. M., Corder, E. H., Kok, A., & Jonker, C. (2000). Stroke and Apolipoprotein E 4 are independent risk factors for cognitive decline: a population-based study. Stroke, 31(10), 2431–2436. doi:10.1161/01.str.31.10.2431.

    CAS  PubMed  Google Scholar 

  • Dodds, C. M., Henson, R. N., Suckling, J., Miskowiak, K. W., Ooi, C. Tait, R., …, Nathan, P. J. (2013). Effects of the BDNF Val66Met polymorphism and met allele load on declarative memory related neural networks. PLoS One, 8(11), e74133. doi:10.1371/journal.pone.0074133.eCollection2013.

  • Donix, M., Small, G. W., & Bookheimer, S. Y. (2012). Family history and APOE-4 genetic risk in Alzheimer’s Disease. Neuropsychology Review, 60(1), 298–309. doi:10.1007/s11065-012-9193-2.

    Google Scholar 

  • Ebner, N. C., Maura, G. M., Macdonald, K., Westberg, L., & Fischer, H. (2013). Oxytocin and socioemotional aging: current knowledge and future trends. Frontiers in Human Neuroscience, 7, 487. doi:10.3389/fnhum.2013.00487.

    PubMed Central  PubMed  Google Scholar 

  • Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., & Weinberger, D. G. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences in the U S A, 98(12), 6917–6922. doi:10.1073/pnas.111134598.

    CAS  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., . . . Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257–269. doi:10.1016/S0092-8674(03)00035-7.

  • Erickson, K. I., Banducci, S. E., Weinstein, A. M., Macdonald, A. W., Ferrell, R. E., Halder, I., & Manuck, S. B. (2013). The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychological Science, 24, 1770–1779. doi:10.1177/0956797613480367.

    PubMed Central  PubMed  Google Scholar 

  • Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., & Van Duijn, C. M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA, 278, 1349–1356. doi:10.1001/jama.1997.03550160069041.

    CAS  PubMed  Google Scholar 

  • Ferencz, B., Laukka, E. J., Welmer, A. K., Kalpouzos, G., Angleman, S., … Bäckman, L. (2014). The benefits of staying active in old age: physical activity counteracts the negative influence of PICALM, BIN1, and CLU risk alleles on episodic memory functioning. Psychology Aging, 29(2), 440–449. doi:10.1037/a0035465.

  • Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., Matthews, P. M., Beckmann, C. F., & Mackay, C. E. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106, 7209–7214. doi:10.1016/j.neuroimage.2010.08.009.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Filippini, N., Ebmeier, K. P., MacIntosh, B. J., Trachtenberg, A. J., Frisoni, G. B., Wilcock, G. K., & Mackay, C. E. (2011). Differential effects of the APOE genotype on brain function across the lifespan. NeuroImage, 54(1), 602–610. doi:10.1016/j.neuroimage.2010.08.009.

    CAS  PubMed  Google Scholar 

  • Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2005). The longitudinal relationship between processing speed and cognitive ability: genetic and environmental influences. Behavior Genetics, 35, 535–549. doi:10.1007/s10519-005-3281-5.

    PubMed  Google Scholar 

  • Fleisher, A. S., Houston, W. S., Eyler, L. T., Frye, S., Jenkins, C., Thal, L. J., & Bondi, M. W. (2005). Identification of Alzheimer disease risk by functional magnetic resonance imaging. Archives of Neurology, 62, 1881–1888. doi:10.1001/archneur.62.12.1881.

    PubMed  Google Scholar 

  • Fleisher, A. S., Podraza, K. M., Bangen, K. J., Taylor, C., Sherzai, A., Sidhar, K., & Buxton, R. B. (2009a). Cerebral perfusion and oxygenation differences in Alzheimer’s disease risk. Neurobiology of Aging, 30(11), 1737–1748. doi:10.1016/j.neurobiolaging.2008.01.012.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fleisher, A. S., Sherzai, A., Taylor, C., Langbaum, J. B., Chen, K., & Buxton, R. B. (2009b). Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. NeuroImage, 47(4), 1678–1690. doi:10.1016/j.neuroimage.2009.06.021.

    PubMed Central  PubMed  Google Scholar 

  • Getz, G. S., & Reardon, C. A. (2009). Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. Journal of Lipid Research, 50(Suppl), S156–S161. doi:10.1194/jlr. R800058-JLR200.

    PubMed Central  PubMed  Google Scholar 

  • Ghisletta, P., Bäckman, L., Bertram, L., Brandmaier, A. M., Gerstorf, D., Liu, T., & Lindenberger, U. (2014). The Val/Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene predicts decline in perceptual speed in older adults. Psychology and Aging, 29(2), 384–392. doi:10.1037/a0035201.

    PubMed  Google Scholar 

  • Grady, C. (2012). The cognitive neuroscience of ageing. Nature Review Neuroscience, 13(7), 491–505. doi:10.1038/nrn3256.

    CAS  Google Scholar 

  • Green, A. E., Munafo, M. R., DeYoung, C. G., Fossella, J. A., Fan, J., & Gray, J. R. (2008). Using genetic data in cognitive neuroscience: from growing pains to genuine insights. Nature Review Neuroscience, 9(9), 710–720. doi:10.1038/nrn2461.

    CAS  Google Scholar 

  • Greenwood, P. M., Lin, M. K., Sundararajan, R., Fryxell, K. J., & Parasuraman, R. (2014). Healthy aging increases the cognitive effects of two genes that influence extracellular dopamine. Psychology and Aging, 29(2), 363–373. doi:10.1037/a0036109.

    PubMed  Google Scholar 

  • Growdon, J. H., Locascio, J. J., Corlin, S., Gomezsla, T., & Hyman, B. T. (1996). Apolipoprotein E genotype does not influence rates of cognitive decline in Alzheimer’s disease. Neurology, 47, 444–448. doi:10.1212/WNL.47.2.444.

    CAS  PubMed  Google Scholar 

  • Han, S. D., Houston, W. S., Jak, A. J., Eyler, L. T., Nagel, B. J., Fleisher, A. S., & Bondi, M. W. (2007). Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiology of Aging, 28(2), 238–247. doi:10.1016/j.neurobiolaging.2005.12.013.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., & Weinberger, D. R. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23(17), 6690–6694. doi:23/17/6690.

    CAS  PubMed  Google Scholar 

  • Harris, S. E., & Deary, I. J. (2011). The genetics of cognitive ability and cognitive ageing in healthy older people. Trends in Cognitive Science, 15(9), 388–394. doi:10.1016/j.tics.2011.07.004.

    Google Scholar 

  • Hashimoto, R., Moriguchi, Y., Yamashita, F., Mori, T., Nemoto, K., Okada, T., & Ohnishi, T. (2008). Dose-dependent effect of the Val66Met polymorphism of the brain-derived neurotrophic factor gene on memory-related hippocampal activity. Neuroscience Research, 61(4), 360–367. doi:10.1016/j.neures.2008.04.003.

    CAS  PubMed  Google Scholar 

  • Heise, V., Filippini, N., Ebmeier, K. B., & Mackay, C. E. (2012). The APOE ε4 allele modulates brain white matter integrity in healthy adults. Molecular Psychiatry, 16, 908–916. doi:10.1038/mp.2010.90.

    Google Scholar 

  • Ihle, A., Bunce, D., & Kliegel, M. (2012). APOE ε4 and cognitive function in early life: a meta-analysis. Neuropsychology, 23(3), 267–277. doi:10.1037/a0026769.

    Google Scholar 

  • Ikeda, O., Murakami, M., Ino, H., Yamazaki, M., Koda, M., Nakayama, C., & Moriya, H. (2002). Effects of brain-derived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression. Journal of Neuropathology and Experimental Neurology, 61(2), 142–153.

    CAS  PubMed  Google Scholar 

  • Johnson, S. C., Schmitz, T. W., Trivedi, M. A., Ries, M. L., Torgerson, B. M., Carlsson, C. M., & Sager, M. A. (2006). The influence of Alzheimer disease family history and apolipoprotein E epsilon4 on mesial temporal lobe activation. Journal of Neuroscience, 26(22), 6069–6076. doi:10.1523/JNEUROSCI.0959-06.2006.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jonsson, E. G., Nothen, M. M., Grunhage, F., Farde, L., Nakashima, Y., Propping, P., & Sedvall, G. C. (1999). Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Molecular Psychiatry, 4(3), 290–296. doi:10.1038/sj.mp.4000532.

    CAS  PubMed  Google Scholar 

  • Josefsson, M., de Luna, X., Pudas, S., Nilsson, L. G., & Nyberg, L. (2012). Genetic and lifestyle predictors of 15-year longitudinal change in episodic memory. Journal of the American Geriatrics Society, 60(12), 2308–2312. doi:10.1111/jgs.12000.

    PubMed  Google Scholar 

  • Kambeitz, J. P., Bhattacharyya, S., Kambeitz-Ilankovic, L. M., Valli, I., Collier, D. A., & McGuire, P. (2012). Effect of BDNF val(66)met polymorphism on declarative memory and its neural substrate: a meta-analysis. Neuroscience and Biobehavioral Reviews, 36(9), 2165–2177. doi:10.1016/j.neubiorev.2012.07.002.

    CAS  PubMed  Google Scholar 

  • Kauppi, K., Nilsson, L. G., Adolfsson, R., Eriksson, E., & Nyberg, L. (2011). KIBRA polymorphism is related to enhanced memory and elevated hippocampal processing. Journal of Neuroscience, 31(40), 14218–14222. doi:10.1523/JNEUROSCI.3292-11.2011.

    CAS  PubMed  Google Scholar 

  • Kauppi, K., Nilsson, L. G., Persson, J., & Nyberg, L. (2014). Additive genetic effect of APOE and BDNF on hippocampus activity. NeuroImage, 89, 306–313. doi:10.1016/j.neuroimage.2013.11.049.

    CAS  PubMed  Google Scholar 

  • Kennedy, K. M., Rodrigue, K. M., Land, S. J., & Raz, N. (2009). BDNF Val66Met polymorphism influences age differences in microstructure of the Corpus Callosum. Frontiers in Human Neuroscience, 3, 19. doi:10.3389/neuro.09.019.2009.

    PubMed Central  PubMed  Google Scholar 

  • Klostermann, E. C., Braskie, M. N., Landau, S. M., O’Neil, J. P., & Jagust, W. J. (2012). Dopamine and frontostriatal networks in cognitive aging. Neurobiology of Aging, 33(3), e15–e24. doi:10.1016/j.neurobiolaging.2011.03.002.

    PubMed  Google Scholar 

  • Laukka, E. J., Lövdén, M., Herlitz, A., Karlsson, S., Ferencz, B., Pantzar, A., & Bäckman, L. (2013). Genetic effects on old-age cognitive functioning: a population-based study. Psychology and Aging, 28(1), 262–274. doi:10.1037/a0030829.

    PubMed  Google Scholar 

  • Li, S.-C., Chicherio, C., Nyberg, L., von Oertzen, T., Nagel, I. E., Papenberg, G., & Backman, L. (2010). Ebbinghaus revisited: influences of the BDNF Val66Met polymorphism on backward serial recall are modulated by human aging. Journal of Cognitive Neuroscience, 22(10), 2164–2173. doi:10.1162/jocn.2009.21374.

    PubMed  Google Scholar 

  • Li, S.-C., Papenberg, G., Nagel, I. E., Preuschhof, C., Schroder, J., Nietfeld, W., . . . Backman, L. (2012). Aging magnifies the effects of dopamine transporter and D2 receptor genes on backward serial memory. Neurobiology Aging. doi:10.1016/j.neurobiolaging.2012.08.001.

  • Lim, Y. Y., Villemagne, V. L., Laws, S. M., Ames, D., Pietrzak, R. H., Ellis, K. A., . . . Group, Aibl Research. (2014). Effect of BDNF Val66Met on memory decline and hippocampal atrophy in prodromal Alzheimer’s disease: a preliminary study. PLoS One, 9(1), e86498. doi:10.1371/journal.pone.0086498.

  • Lind, J., Persson, J., Ingvar, M., Larsson, A., Cruts, M., Van Broeckhoven, C., . . . Nyberg, L. (2006). Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain: A Journal Of Neurology, 129(Pt 5), 1240–1248. doi:10.1093/brain/awl054.

  • Lindenberger, U., & Ghisletta, P. (2009). Cognitive and sensory declines in old age: gauging the evidence for a common cause. Psychology and Aging, 24(1), 1–16. doi:10.1037/a0014986.

    PubMed  Google Scholar 

  • Lindenberger, U., Nagel, I. E., Chicherio, C., Li, S. C., Heekeren, H. R., & Bäckman, L. (2008). Age-related decline in brain resources modulates genetic effects on cognitive functioning. Frontiers in Neuroscience, 2(2), 234–244. doi:10.3389/neuro.01.039.2008.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lindenberger, U., Burzynska, A. Z., & Nagel, I. E. (2013). Heterogeneity in frontal lobe aging. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe functions (Vol. 2nd. ed.). New York: Oxford University Press.

    Google Scholar 

  • Liu, F., Pardo, L. M., Schuur, M., Sanchez-Juan, P., Isaacs, A., Sleegers, K., & van Duijn, C. M. (2010). The apolipoprotein E gene and its age-specific effects on cognitive function. Neurobiology of Aging, 31(10), 1831–1833. doi:10.1016/j.neurobiolaging.2008.09.015.

    CAS  PubMed  Google Scholar 

  • Liu, C. C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106–118. doi:10.1038/nrneurol.2012.263.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lotta, T., Vidgren, J., Tilgmann, C., Ulmanen, I., Melen, K., Julkunen, I., & Taskinen, J. (1995). Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry, 34(13), 4202–4210. doi:10.1021/bi00013a008.

    CAS  PubMed  Google Scholar 

  • Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learning and Memory, 10(2), 86–98. doi:10.1101/lm.54603.

    PubMed  Google Scholar 

  • Mahley, R. W., Weisgraber, K. H., & Huang, Y. (2009). Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. Journal of Lipid Research, 50(Suppl), S183–S188. doi:10.1194/jlr.R800069-JLR200.

    PubMed Central  PubMed  Google Scholar 

  • Matsumoto, M., Weickert, C. S., Akil, M., Lipska, B. K., Hyde, T. M., Herman, M. M., . . . Weinberger, D. R. (2003). Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience, 116(1), 127–137. doi:10.1016/S0306-4522(02)00556-0.

  • Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2010). Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Molecular Psychiatry, 15(9), 918–927. doi:10.1038/mp.2009.36.

    CAS  PubMed  Google Scholar 

  • Milnik, A., Heck, A., Vogler, C., Heinze, H. J., de Quervain, D. J., & Papassotiropoulos, A. (2012). Association of KIBRA with episodic and working memory: a meta-analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B(8), 958–969. doi:10.1002/ajmg.b.32101.

    Google Scholar 

  • Miyajima, F., Ollier, W., Mayes, A., Jackson, A., Thacker, N., Rabbitt, P., & Payton, A. (2008). Brain-derived neurotrophic factor polymorphism Val66Met influences cognitive abilities in the elderly. Genes, Brain and Behavior, 7(4), 411–417. doi:10.1111/j.1601-183X.2007.00363.x.

    CAS  Google Scholar 

  • Modrego, P. J. (2006). Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment. Current Alzheimer Research, 3(2), 161–170. doi:10.2174/156720506776383103.

    CAS  PubMed  Google Scholar 

  • Mondadori, C. R., de Quervain, D. J., Buchmann, A., Mustovic, H., Wollmer, M. A., Schmidt, C. F., Boesiger, P., Hock, C., Nitsch, R. M., Papassotiropoulos, A., & Henke, K. (2007). Better memory and neural efficiency in young apolipoprotein E epsilon4 carriers. Cerebral Cortex, 17, 1934–1947. doi:10.1093/cercor/bhl103.

    PubMed  Google Scholar 

  • Monteggia, L. M., Barrot, M., Powell, C., Berton, O., Galanis, V., Nagy, A., …, & Nestler, E. J. (2004) Essential role of BDNF in adult hippocampal function and depression. Proceedings of the National Academy of Sciences, 101(29), 10827–10832. doi:10.1073/pnas.0402141101.

  • Moretti, D. V., Prestia, A., Fracassi, C., Binetti, G., Zanetti, O., & Frisoni, G. B. (2012). Specific EEG changes associated with atrophy of hippocampus in subjects with mild cognitive impairment and Alzheimer’s disease. International Journal of Alzheimer’s Disease, 2012, 253153. doi:10.1155/2012/253153.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morse, J. K., Wiegand, S. J., Anderson, K., You, Y., Cai, N., Carnahan, J., . . . et al. (1993). Brain-derived neurotrophic factor (BDNF) prevents the degeneration of medial septal cholinergic neurons following fimbria transection. Journal of Neuroscience, 13(10), 4146–4156.

  • Muse, J., Emery, M., Sambataro, F., Lemaitre, H., Tan, H. Y., Chen, Q., . . . Mattay, V. S. (2014). WWC1 genotype modulates age-related decline in episodic memory function across the adult life span. Biology Psychiatry, 75(9), 693–700. doi:10.1016/j.biopsych.2013.09.036.

  • Nagel, I. E., Chicherio, C., Li, S.-C., von Oertzen, T., Sander, T., Villringer, A., . . . Lindenberger, U. (2008). Human aging magnifies genetic effects on executive functioning and working memory. Frontiers in Human Neuroscience, 2, 1. doi:10.3389/neuro.09.001.2008.

  • Nagel, I. E., Preuschhof, C., Li, S. C., Nyberg, L., Bäckman, L., Lindenberger, U., & Heekeren, H. R. (2009). Performance level modulates adult age differences in brain activation during spatial working memory. Proceedings of the National Academy of Sciences in the U S A, 106(52), 22552–22557. doi:10.1073/pnas.0908238106.

    CAS  Google Scholar 

  • Nichols, L. M., Masdeu, J. C., Mattay, V. S., Kohn, P., Emery, M., Sambataro, F., …, Berman, K. F. (2012). Interactive effect of apolipoprotein e genotype and age on hippocampal activation during memory processing in healthy adults. Archives of General Psychiatry, 69(8), 804–13. doi:10.1001/archgenpsychiatry.2011.1893.

  • Nyberg, L., & Salami, A. (2014). The APOE ε4 allele in relation to brain white-matter microstructure in adulthood and aging. Scandinavian Journal of Psychology, 55, 263–267. doi:10.1111/sjop.12099.

    PubMed  Google Scholar 

  • Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Science, 16(5), 292–305. doi:10.1016/j.tics.2012.04.005.

    Google Scholar 

  • Nyberg, L., Andersson, M., Kauppi, K., Lundquist, A., Persson, J., Pudas, S., & Nilsson, L. G. (2014). Age-related and genetic modulation of frontal cortex efficiency. Journal of Cognitive Neuroscience, 26(4), 746–754. doi:10.1162/jocn_a_00521.

    PubMed  Google Scholar 

  • O’Brien, J. L., O’Keefe, K. M., LaViolette, P. S., DeLuca, A. N., Blacker, D., Dickerson, B. C., & Sperling, R. A. (2010). Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology, 74(24), 1969–1976. doi:10.1212/WNL.0b013e3181e3966e.

    PubMed Central  PubMed  Google Scholar 

  • Okuizumi, K., Onodera, O., Namba, Y., Ikeda, K., Yamamoto, T., Seki, K., . . . Tsuji, S. (1995). Genetic association of the very low density lipoprotein (VLDL) receptor gene with sporadic Alzheimer’s disease. Nature Genetic, 11, 207–209. doi:10.1038/ng1095-207.

  • Pantzar, A., Laukka, E. J., Atti, A. R., Papenberg, G., Keller, L., Graff, C., . . . Backman, L. (2014). Interactive effects of KIBRA and CLSTN2 polymorphisms on episodic memory in old-age unipolar depression. Neuropsychologia. doi:10.1016/j.neuropsychologia.2014.07.020.

  • Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V., . . . de Quervain, D. J. (2006). Common Kibra alleles are associated with human memory performance. Science, 314(5798), 475–478. doi:10.1126/science.1129837.

  • Papenberg, G., Backman, L., Nagel, I. E., Nietfeld, W., Schroder, J., Bertram, L., . . . Li, S. C. (2013). COMT polymorphism and memory dedifferentiation in old age. Psychology Aging. doi:10.1037/a0033225.

  • Papenberg, G., Li, S. C., Nagel, I. E., Nietfeld, W., Schjeide, B. M., Schroder, J., . . . Backman, L. (2014a). Dopamine and glutamate receptor genes interactively influence episodic memory in old age. Neurobiology Aging, 35(5), 1213 e1213-1218. doi:10.1016/j.neurobiolaging.2013.11.014.

  • Papenberg, G., Lövdén, M., Laukka, E. J., Kalpouzos, G., Keller, L., Graff, C., . . . Bäckman, L. (2014b). Magnified effects of the COMT gene on white-matter microstructure in very old age. Brain Structure & Function. doi:10.1007/s00429-014-0835-4.

  • Persson, J., Rieckmann, A., Kalpouzos, G., Fischer, H., & Bäckman, L. (2014). Influences of a DRD2 polymorphism on updating of long-term memory representations and caudate BOLD activity: magnification in aging. Human Brain Mapping. doi:10.1002/hbm.22704.

    PubMed  Google Scholar 

  • Pihlajamaki, M., K, O’ Keefe, Bertram, L., Tanzi, R. E., Dickerson, B. C., Blacker, D., . . . Sperling, R. A. (2010). Evidence of altered posteromedial cortical FMRI activity in subjects at risk for Alzheimer disease. Alzheimer Disease and Associated Disorders, 24(1), 28–36. doi:10.1097/WAD.0b013e3181a785c9.

  • Ponomareva, N., Andreeva, T., Protasova, M., Shagam, L., Malina, D., Goltsov, A., . . . Rogaev, E. (2013). Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults. Front Aging Neuroscience, 5, 86. doi:10.3389/fnagi.2013.00086.

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, USA, 98(2), 676–682. doi:10.1073/pnas.98.2.676.

    CAS  Google Scholar 

  • Raichlen, D. A, & Alexander, G. E. (2014). Exercise, APOE genotype, and the evolution of the human lifespan. Trends in Neurosciences, 37(5), 247–55. doi:10.1016/j.tins.2014.03.001.

  • Rasch, B., Papassotiropoulos, A., & de Quervain, D. F. (2010). Imaging genetics of cognitive functions: focus on episodic memory. NeuroImage, 53(3), 870–877. doi:10.1016/j.neuroimage.2010.01.001.

    CAS  PubMed  Google Scholar 

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., . . . Acker, J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689. doi:10.1093/cercor/bhi044.

  • Raz, N., Lindenberger, U., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Acker, J. D. (2008). Neuroanatomical correlates of fluid intelligence in healthy adults and persons with vascular risk factors. Cerebral Cortex, 18(3), 718–726. doi:10.1093/cercor/bhm108.

    PubMed Central  PubMed  Google Scholar 

  • Ronn, T., Volkov, P., Davegardh, C., Dayeh, T., Hall, E., Olsson, A. H., . . . Ling, C. (2013). A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet, 9(6), e1003572. doi:10.1371/journal.pgen.1003572.

  • Rönnlund, M., Nyberg, L., Bäckman, L., & Nilsson, L. G. (2005). Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study. Psychology and Aging, 20(1), 3–18. doi:10.1037/0882-7974.20.1.3.

    PubMed  Google Scholar 

  • Sambataro, F., Reed, J. D., Murty, V. P., Das, S., Tan, H. Y., Callicott, J. H., . . . Mattay, V. S. (2009). Catechol-O-methyltransferase valine(158)methionine polymorphism modulates brain networks underlying working memory across adulthood. Biological Psychiatry, 66(6), 540–548. doi:10.1016/j.biopsych.2009.04.014.

  • Sambataro, F., Murty, V. P., Lemaitre, H. S., Reed, J. D., Das, S., Goldberg, T. E., . . . Mattay, V. S. (2010). BDNF modulates normal human hippocampal ageing [corrected]. Molecular Psychiatry, 15(2), 116–118. doi:10.1038/mp.2009.64.

  • Sanchez, M. M., Das, D., Taylor, J. L., Noda, A., Yesavage, J. A., & Salehi, A. (2011). BDNF polymorphism predicts the rate of decline in skilled task performance and hippocampal volume in healthy individuals. Transl Psychiatry, 1, e51. doi:10.1038/tp.2011.47.

    PubMed Central  PubMed  Google Scholar 

  • Sapkota, S., Vergote, D., Westaway, D., Jhamandas, J., & Dixon, R. A. (2014). Synergistic associations of COMT and BDNF with executive function in aging are selective and modified by APOE. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2014.06.020.

    PubMed  Google Scholar 

  • Schaie, K. W., Maitland, S. B., Willis, S. L., & Intrieri, R. C. (1998). Longitudinal invariance of adult psychometric ability factor structures across 7 years. Psychology and Aging, 13(1), 8–20. doi:10.1037//0882-7974.13.1.8.

    CAS  PubMed  Google Scholar 

  • Schiepers, O. J., Harris, S. E., Gow, A. J., Pattie, A., Brett, C. E., Starr, J. M., & Deary, I. J. (2012). APOE E4 status predicts age-related cognitive decline in the ninth decade: longitudinal follow-up of the Lothian Birth Cohort 1921. Molecular Psychiatry, 17(3), 315–324. doi:10.1038/mp.2010.137.

    CAS  PubMed  Google Scholar 

  • Schneider, A., Huentelman, M. J., Kremerskothen, J., Duning, K., Spoelgen, R., & Nikolich, K. (2010). KIBRA: a new gateway to learning and memory? Frontiers in Aging Neuroscience, 2, 4. doi:10.3389/neuro.24.004.2010.

    PubMed Central  PubMed  Google Scholar 

  • Schuck, N. W., Doeller, C. F., Schjeide, B. M., Schroder, J., Frensch, P. A., Bertram, L., & Li, S. C. (2013). Aging and KIBRA/WWC1 genotype affect spatial memory processes in a virtual navigation task. Hippocampus, 23(10), 919–930. doi:10.1002/hipo.22148.

    CAS  PubMed  Google Scholar 

  • Schwab, L. C., Luo, V., Clarke, C. L., & Nathan, P. J. (2014). Effects of the KIBRA single nucleotide polymorphism on synaptic plasticity and memory: a review of the literature. Current Neuropharmacology, 12(3), 281–288. doi:10.2174/1570159X11666140104001553.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slifstein, M., Kolachana, B., Simpson, E. H., Tabares, P., Cheng, B., Duvall, M., & Abi-Dargham, A. (2008). COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PET. Molecular Psychiatry, 13(8), 821–827. doi:10.1038/mp.2008.19.

    CAS  PubMed  Google Scholar 

  • Small, B. J., Rosnick, C. B., Fratiglioni, L., & Bäckman, L. (2004). Apolipoprotein E and cognitive performance: a meta-analysis. Psychology and Aging, 19(4), 592–600. doi:10.1037/08827974.19.4.592.supp10.1037/0882-.

    PubMed  Google Scholar 

  • Small, B. J., Rawson, K. S., Walsh, E., Jim, H. S. L., Hughes, T. F., Iser, L., … Jacobsen. P. B. (2011). Catechol-O-methyltransferase genotype modulates cancer treatment-related cognitive deficits in breast cancer survivors. Cancer, 117, 1369–1376. doi:10.1002/cncr.25685.

  • Smith, J. D. (2002). Apolipoproteins and aging: emerging mechanisms. Ageing Research Reviews, 1, 345–365. doi:10.1016/S1568-1637(02)00005-3.

    CAS  PubMed  Google Scholar 

  • Stuart, K., Summers, M. J., Valenzuela, M. J., & Vickers, J. C. (2014). BDNF and COMT polymorphisms have a limited association with episodic memory performance or engagement in complex cognitive activity in healthy older adults. Neurobiology of Aging, 110, 1–7.

    CAS  Google Scholar 

  • Sweatt, D. J. (2013). The emerging field of neuroepigenetics. Neuron, 80(3), 624–632. doi:10.1016/j.neuron.2013.10.023.

    CAS  PubMed  Google Scholar 

  • Thorvaldsson, V., Macdonald, S. W., Fratiglioni, L., Winblad, B., Kivipelto, M., Laukka, E. J., & Backman, L. (2011). Onset and rate of cognitive change before dementia diagnosis: findings from two Swedish population-based longitudinal studies. Journal of International Neuropsychological Society, 17(1), 154–162. doi:10.1017/S1355617710001372.

    Google Scholar 

  • Trivedi, M. A., Schmitz, T. W., Ries, M. L., Torgerson, B. M., Sager, M. A., Hermann, B. P., & Johnson, S. C. (2006). Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer’s disease: a cross-sectional study. BMC Medicine, 4, 1. doi:10.1186/1741-7015-4-1.

    PubMed Central  PubMed  Google Scholar 

  • Tucker-Drob, E. M., Reynolds, C. A., Finkel, D., & Pedersen, N. L. (2014). Shared and unique genetic and environmental influences on aging-related changes in multiple cognitive abilities. Developmental Psychology, 50, 152–166. doi:10.1037/a0032468.

    PubMed Central  PubMed  Google Scholar 

  • Tunbridge, E. M., Harrison, P. J., & Weinberger, D. R. (2006). Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60(2), 141–151. doi:10.1016/j.biopsych.2005.10.024.

    CAS  PubMed  Google Scholar 

  • Tunbridge, E. M., Weickert, C. S., Kleinman, J. E., Herman, M. M., Chen, J., Kolachana, B. S., . . . Weinberger, D. R. (2007). Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cerebral Cortex, 17(5), 1206–1212. doi:10.1093/cercor/bhl032.

  • Turkheimer, E. (2011). Still missing. Research in Human Development, 8, 227–241. doi:10.1080/15427609.2011.625321.

    Google Scholar 

  • Tyler, W. J., Alonso, M., Bramham, C. R., & Pozzo-Miller, L. D. (2002). From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learning and Memory, 9, 224–237. doi:10.1101/lm.51202.

    PubMed Central  PubMed  Google Scholar 

  • Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., & Buckner, R. L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of Neurophysiology, 96(6), 3517–3531. doi:10.1152/jn.00048.2006.

    PubMed  Google Scholar 

  • Vogler, C., Gschwind, L., Coynel, D., Freytag, V., Milnik, A., …, Papassotiropoulos, A. (2014). Substantial SNP-based heritability estimates for working memory performance. Translational Psychiatry, 4, e438. doi:10.1038/tp.2014.81.

  • Volkow, N. D. (2000). Association between age-related decline in dopamine activity and impairment in frontal and cingulate matabolism. American Journal of Psychiatry, 157, 75–80.

    CAS  PubMed  Google Scholar 

  • Ward, A. M., Schultz, A. P., Huijbers, W., Van Dijk, K. R., Hedden, T., & Sperling, R. A. (2014). The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Human Brain Mapping, 35(3), 1061–1073. doi:10.1002/hbm.22234.

    PubMed Central  PubMed  Google Scholar 

  • Westlye, L. T., Reinvang, I., Rootwelt, H., & Espeseth, T. (2012). Effects of APOE on brain white matter microstructure in healthy adults. Neurology, 79, 1961–1969. doi:10.1212/WNL.0b013e3182735c9c.

    CAS  PubMed  Google Scholar 

  • Wilson, R. S., Barral, S., Lee, J. H., Leurgans, S. E., Foroud, T. M., Sweet, R. A., …, Bennett, D. A. (2011). Heritability of different forms of memory in the Late Onset Alzheimer’s Disease Family Study. Journal of Alzheimers Disease, 23(2), 249–255. doi:10.3233/JAD-2010-101515

  • Wisdom, N. M., Callahan, J. L., & Hawkins, K. A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: a meta-analysis. Neurobiology of Aging, 32(1), 63–74. doi:10.1016/j.neurobiolaging.2009.02.003.

    CAS  PubMed  Google Scholar 

  • Witte, A. V., & Flöel, A. (2012). Effects of COMT polymorphisms on brain function and behavior in health and disease. Brain Research Bulletin, 88(5), 418–428. doi:10.1016/j.brainresbull.2011.11.012.

    CAS  PubMed  Google Scholar 

  • Xu, G., McLaren, D. G., Ries, M. L., Fitzgerald, M. E., Bendlin, B. B., Rowley, H. A., & Johnson, S. C. (2009). The influence of parental history of Alzheimer’s disease and apolipoprotein E epsilon4 on the BOLD signal during recognition memory. Brain: A Journal of Neurology, 132(Pt 2), 383–391. doi:10.1093/brain/awn254.

    Google Scholar 

Download references

Acknowledgments

Preparation of this review was supported by grants from the Swedish Research Council, the Swedish Research Council for Health, Working Life, and Welfare, Swedish Brain Power, an Alexander von Humboldt Research Award, and a donation from the af Jochnick Foundation to Lars Bäckman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Papenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papenberg, G., Salami, A., Persson, J. et al. Genetics and Functional Imaging: Effects of APOE, BDNF, COMT, and KIBRA in Aging. Neuropsychol Rev 25, 47–62 (2015). https://doi.org/10.1007/s11065-015-9279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-015-9279-8

Keywords

Navigation