Skip to main content
Log in

Behavior at the Choice Point: Decision Making in Hidden Pathway Maze Learning

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Hidden pathway maze learning tasks (HPMLTs) have been used in neuropsychological research and practice for more than 80 years. These tasks require the use of visual and auditory task feedback signals to learn the order and direction of a pathway, typically within a grid of stepping-stones, or alleys. Hidden pathway maze learning tasks are purported to assess both visuospatial learning and executive processes. The original motivation for the HPMLT paradigm for humans was to reduce a complex tactual planning task to one in which decisions could be directly measured by discrete actions at choice points guided by visual cues. Hidden maze learning paradigms were used extensively throughout the 20th century, initially to study exploratory, anticipatory, and goal-related behavior within the context of memory research, and later as an experimental tool in neuropsychology. Computerization of HPMLTs have allowed for the measurement of different move categories according to the rule structure and ipso facto, clinically meaningful differences in memory and monitoring functions during spatial search and learning. Hidden pathway maze learning tests have been used to understand the cognitive effects of ageing, neurological disorders, and psychopharmacological challenges. We provide a review of historical antecedents relevant to contemporary applications of HPMLTs in neuropsychology. It is suggested that contemporary applications of HPMLTs could be advanced by analysis of component operations necessary for efficient performance that can inform theoretical interpretations of this class of tests in clinically meaningful terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alderman, N., Burgess, P. W., Knight, C., & Henman, C. (2003). Ecological validity of a simplified version of the multiple errands shopping test. Journal of the International Neuropsychological Society, 9(1), 31–44. doi:10.1017/S1355617703910046.

    PubMed  Google Scholar 

  • Barker, R. G. (1931). The stepping-stone maze: A directly visible space-problem apparatus. Journal of General Psychology, 5, 280–285. doi:10.1037/h0072916.

    Google Scholar 

  • Barker, M. J., Greenwood, K. M., Jackson, M., & Crowe, S. (2005). An evaluation of persisting cognitive effects after withdrawal from logn-term benzodiazépine use. Journal of the International Neuropsychological Society, 11, 281–289. doi:10.1017/S1355617705500332.

    CAS  PubMed  Google Scholar 

  • Behar, D., Rappoport, J. L., Berg, D. J., Denckla, M. B., Mann, L., Cox, C., & Wolfman, M. G. (1984). Computerized tomography and neuropsychological test measures in adolescents with obsessive-compulsive disorder. American Journal of Psychiatry, 141(3), 363––367. Retrieved from: http://ajp.psychiatryonline.org.

    PubMed  Google Scholar 

  • Benton, A. L., Elithorn, A., Fogel, M. L., & Kerr, M. (1963). A perceptual maze test sensitive to brain damage. Journal of Neurology, Neurosurgery and Psychiatry, 26, 540–544. doi:10.1136/jnnp.26.6.540.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bigelow, H. J. (1850). ART.I- Dr. Harlow’s case of recovery from the passage of an iron bar through the head. The American Journal of Medical Sciences, 16(3), 13–22. Retrieved from: http://journals.lww.com/amjmedsci/toc/1850/16390.

    Google Scholar 

  • Binet, A., & Simon, T. H. (1909). L’Intelligence des Imbeciles. Anee Psychol., 1–147. (128ff), cited in Peterson, J. (1922). Intelligence and learning. Psychological Review, 29(5), 336–389. doi:10.1037/h0069483.

    Google Scholar 

  • Boulanger, M., Snyder, P.-J., & Cohen, H. (2006). Ralentissement cognitif dans le vieillissement: fonctions exécutives et apprentissage procédural lors d'une tâche informatisée de labyrinthe (Assessment of cognitive slowing and error monitoring in healthy older subjects on a computerized maze learning task). Annales Médico-Psychologiques, Revue Psychiatrique, 164(6), 463–469. doi:10.1016/j.amp.2005.01.001.

    Google Scholar 

  • Bowden, S. C. (1988). Learning in young alcoholics. Journal of Clinical and Experimental Neuropsychology, 10(2), 157–168. doi:10.1080/01688638808408232.

    CAS  PubMed  Google Scholar 

  • Bowden, S. C. (1989). Maze learning: Reliability and equivalence of alternative pathways. The Clinical Neuropsychologist, 3(2), 137–144. doi:10.1080/13854048908403286.

    Google Scholar 

  • Bowden, S. C., Dodds, B., Whelan, G., Long, C., Dudgeon, P., Ritter, A., & Clifford, C. (1997). Confirmatory factor analysis of the Wechsler memory scale-revisited in a sample of clients with alcohol dependency. Clinical and Experimental Neuropsychology, 19(5), 755–762. doi:10.1080/01688639708403757.

    CAS  Google Scholar 

  • Bowden, S. C., Dumendizic, J., Hopper, J., Kinsella, G., Clifford, C., & Tucker, A. (1992). Healthy adults performance on the Austin Maze. The Clinical Psychologist, 6, 43–52.

    Google Scholar 

  • Bowden, S. C., & McCarter, R. J. (1993). Spatial memory in alcohol-dependent subjects: Using a push-button maze to test the principle of equiavailability. Brain and Cognition, 22, 51–62. doi:10.1006/brcg.1993.1024.

    CAS  PubMed  Google Scholar 

  • Bowden, S. C., & Smith, L. C. (1994). What does the Austin maze measure? Australian Psychologist, 29, 34–37.

    Google Scholar 

  • Brown, W., & Buel, J. (1940). Response tendencies and maze patterns as determiners of choice in a maze. Journal of Comparative Psychology, 29(3), 337–399. doi:10.1037/h0059538.

    Google Scholar 

  • Brownell, W. A. (1939). Theoretical aspects of learning and transfer of training. Review of Educational Research, 9(3), 255–273. Retrieved from: http://www.jstor.org/stable/1167404.

  • Bunge, S. A., & Crone, E. A. (2009). Neural correlates of the development of cognitive control (pp 22–37). In J. M. Rumsey & M. Ernst (Eds.), Neuroimaging in Developmental Clinical Neuroscience. London: Cambridge University Press.

    Google Scholar 

  • Burgess, P. W., Alderman, N., Forbes, C., Costello, A., Coates, L. M.-A., Dawson, D. R., & Channon, S. (2006). The case for the development and use of “ecologically valid” measures of executive function in clinical and experimental neuropsychology. Journal of the International Neuropsychological Society, 12, 194–209. doi:10.1017/S1355617706060310.

    PubMed  Google Scholar 

  • Caffarra, P., Vezzadini, G., Dieci, F., Zonato, F., & Venneri, A. (2002). Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurological Sciences, 22, 443–447. Retrieved from: http://link.springer.com/article/10.1007/s100720200003#page-1.

    CAS  PubMed  Google Scholar 

  • Carr, H. A. (1921). The influence of visual guidance in maze learning. Journal of Experimental Psychology, 4(6), 399–417. doi:10.1037/h0072602.

    Google Scholar 

  • Canavan, A. G. M. (1983). Stylus-Maze performance in patients with frontal-lobe lesions: Effects of signal valency and relationship to verbal and spatial abilities. Neuropsychologia, 21(4), 375–382. doi:10.1016/0028-3932(83)90024-6.

    CAS  PubMed  Google Scholar 

  • Castner, S. A., Andrews, R. D., Ordonez, C. E., Brown, T. F., Strother, S. C., Wernick, M. N., Williams, G. V., & Snyder, P. J. (2004). Context dependent effects of lorazepam on regional cerebral glucose metabolism revealed by cognitive testing in FDG-PET. Poster presentation at 17th annual Winter Conference on Brain Research, Copper Mountain, CO., 24–30 January

  • Chase, W. P. (1934). The role of kinesthesis in ideational maze learning. Journal of Experimental Psychology, 17(3), 424–438. doi:10.1037/h72695.

    Google Scholar 

  • Chen, K. H. M., Chauh, L. Y. M., Sim, S. K. Y., & Chee, M. W. L. (2009). Hippocampal region specific contributions to memory performance in normal elderly. Brain and Cognition, 72, 400–407. doi:10.1016/j.bandc_2009.11.007.

    PubMed  Google Scholar 

  • Chrastil, E. E. R. (2013). Neural evidence supports a novel framework for spatial navigation. Psychonomic Bulletin and Review, 20, 208–227. doi:10.3758/s13423-012-0351-6.

    PubMed  Google Scholar 

  • Clark, C. R., Paul, R. H., Williams, L. M., Arns, M., Fallahpour, K., Handmer, C., & Gordon, E. (2006). Standardized assessment of cognitive functioning during development and aging using an automated touchscreen battery. Archives of Clinical Neuropsychology, 21, 449–467. doi:10.1016/j.acn.2006.06.005.

    PubMed  Google Scholar 

  • Collie, A., Maruff, P., Snyder, P. J., Darekar, A., & Huggins, J. P. (2006). Cognitive testing in early phase clinical trials: outcome according to adverse event profile in a Phase I study. Human Psychopharmacology: Clinical and Experimental, 21(7), 481–488. doi:10.1002/hup.799.

    CAS  Google Scholar 

  • Cox, C. (1928). Comparative behavior in solving a series of maze problems of varying difficulty. Journal of Experimental Psychology, 11(3), 202–218. doi:10.1037/h0074984.

    Google Scholar 

  • Crowe, S. F., Barclay, L., Brennan, S., Farkas, L., Gould, E., Katchmarsky, S., & Yayda, S. (1999). The cognitive determinants of performance on the Austin Maze. Journal of the International Nueropsychological Society, 5, 1–9. Retrieved from: http://journals.cambridge.org/action/displayJournal?jid=INS.

    CAS  Google Scholar 

  • Darby, D., & Walsh, K. (2005). Walsh’s Neuropsychology. A Clinical Approach (5th ed.). Edinburg: Elsevier.

    Google Scholar 

  • Darwin, C. R. (1871). The Descent of Man. London: Murray.

    Google Scholar 

  • De Luca, C. R., Wood, S. J., Anderson, V., Buchanan, J., Proffitt, T. M., Mahony, K., & Pantelis, C. (2003). Normative data from CANTAB. I: Development of executive functions over the lifespan. Journal of Clinical and Experimental Neuropsychology, 25(2), 242–254. doi:10.1076/jcen.25.2.242.13639.

    PubMed  Google Scholar 

  • De Renzi, E., Faglioni, P., & Villa, P. (1977). Topographical amnesia. Journal of Neurology, Neurosurgery, and Psychiatry, 40, 498–505. doi:10.1136/jnnp.40.5.498.

    PubMed Central  PubMed  Google Scholar 

  • Elithorn, A. (1955). A preliminary report on a perceptual maze test sensitive to brain damage. Journal of Neurology, Neurosurgery and Psychiatry, 18, 287–292. doi:10.1136/jnnp.18.4.287.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faber, P., & Berman, L. (1938). Construction and use of a variable contact maze. The Psychological Record, 10(2), 302–306. Retrieved from: thepsychologicalrecord.siuc.edu/Vol-2-1938.html.

    Google Scholar 

  • Flitman, S., O’Grady, J., Cooper, V., & Grafman, J. (1997). PET imaging of maze processing. Neuropsychologia, 35(4), 409–420. doi:10.1016/S0028-3932(96)00086-3.

    CAS  PubMed  Google Scholar 

  • Gilbert, R. W. (1934). An electrical maze stylus. Journal of Genetic Psychology, 10, 485–486. doi:10.1080/00221309.1934.9917755.

    Google Scholar 

  • Gould, M. C., & Perrin, F. A. (1916). A comparison of the factors involved in the maze learning of human adults and children. Journal of Experimental Psychology, 1(2), 122–154. doi:10.1037/h0072916.

    Google Scholar 

  • Griffith, C. R. (1931). A flexible form of the Carr Slot-Maze. The American Journal of Psychology, 43(2), 283–285. Retrieved from: http://www.jstor.org/stable/i261734.

  • Gunstad, J., Paul, R. H., Cohen, R. A., Tate, D. F., Spitznagel, M. B., & Gordon, E. (2007). Elevated body mass index is associated with executive function dysfunction in otherwise healthy adults. Comprehensive Psychiatry, 48, 57–61. doi:10.1016/j.comppsyc.2006.05.001.

    PubMed  Google Scholar 

  • Gurnee, H. (1938). The effect of electrical shock for right responses on maze learning in human subjects. Journal of Experimental Psychology, 22(4), 354–364. doi:10.1037/h0054726.

    Google Scholar 

  • Habib, M., & Sirigu, A. (1987). Pure topographical disorientation: A definition and anatomical basis. Cortex, 23, 73–85. doi:10.1016/S0010-9452(87)80020-5.

    CAS  PubMed  Google Scholar 

  • Hamilton, M. D. (1911). A study of trial and error reactions in mammals. Journal of Animal Behavior, 1(1), 33–66. doi:10.1037/h0070439.

    Google Scholar 

  • Hatfield, G. (2002). Psychology, philosophy, and cognitive science: Reflections on the history and philosophy of experimental psychology. Mind and Language, 17(3), 207–232. Retrieved from: http://scholar.google.com.au/scholar?q=hatfield+2002+mind+and+language&btnG=&hl=en&as_sdt=2005&sciodt=0%2C5&cites=3249434448813365107&scipsc=.

    Google Scholar 

  • Head, D., Bolton, D., & Hymas, N. (1989). Deficits in cognitive shifting ability in patients with obsessive-compulsive disorder. Biological Psychiatry, 25(7), 929937. Retrieved from: http://www.elsevier.com/wps/find/journaldescription.cws_home/505750/description#description.

  • Hill, C. J. (1939). Goal gradient, anticipation, and perseveration in compound trial-and-error learning. Journal of Experimental Psychology, 25(6), 566–585. doi:10.1037/h0059929.

    Google Scholar 

  • Hull, C. L. (1932). The goal gradient hypothesis and maze learning. Psychological Review, 39(1), 25–43. doi:10.1037/h0072640.

    Google Scholar 

  • Hull, C. L. (1934a). The concept of the habit-family hierarchy: Part I. Psychological Review, 41(1), 33–54. doi:10.1037/h0070758.

    Google Scholar 

  • Hull, C. L. (1934b). The concept of the habit-family hierarchy: Part II. Psychological Review, 41(2), 33–54. doi:10.1037/h0072855.

    Google Scholar 

  • Hull, C. L. (1938). The goal-gradient hypothesis applied to some ‘field-force’ problems in the behavior of young children. The Psychologial Review, 45(4), 271–299. doi:10.1037/h0053885.

    Google Scholar 

  • Hymas, N., Lees, A., Bolton, D., Epps, K., & Head, D. (1991). The neurology of obsessional slowness. Brain, 114, 2203–2233. doi:10.1093/brain/114.5.2203.

    PubMed  Google Scholar 

  • Jensen, M. B. (1934). Punishment by electric shock as affecting performance on a raised finger maze. Journal of Experimental Psychology, 17(1), 65–72. doi:10.1037/h0075639.

    Google Scholar 

  • Jones, H. E., & Batalla, M. (1944). Transfer in children’s maze learning. The Journal of Educational Psychology, 35(8), 474–483. Retrieved from: http://csaweb112v.csa.com.ezp.lib.unimelb.edu.au/ids70/browse_archive.php?SID=5h5k0hteisoj9ieljg6sk16j91&db=psycarticles-set-c&issn=0022-0663.

    Google Scholar 

  • Jones, H. E., & Yoshioka, J. (1938). Differential errors in children’s learning on a stylus maze. Journal of Comparative Psychology, 25, 463–480. doi:10.1037/h0054154.

    Google Scholar 

  • Karnath, H. O., Wallesch, C. W., & Zimmermann, P. (1991). Mental planning and anticipatory processes with acute and chronic frontal lobe lesions: Comparisons of maze performance in routine and non-routine situations. Neuropsychologia, 29(4), 271–290. doi:10.1016/0028-3932(91)90042-7.

    CAS  PubMed  Google Scholar 

  • Kessels, R. P. C., de Haan, E. H. F., Jaap Kappelle, L., & Postma, A. (2001). Varieties of human spatial memory: a meta-analysis on the effects of hippocampal lesions. Brain Research Reviews, 35(3), 295–303. doi:10.1016/S0165-0173(01)00058-3.

    CAS  PubMed  Google Scholar 

  • Kilpatrick, C., Murrie, V., Cook, M., Andrews, D., Desmond, P., & Hopper, J. (1997). Degree of left hippocampal atrophy correlates with severity of neuropsychological deficits. Seizure, 6, 213–218. doi:10.1016/S1059-1311(97)80008-8.

    CAS  PubMed  Google Scholar 

  • Kinsella, G., Prior, M., Sawyer, M., Murtagh, D., Eisenmajer, R., Anderson, V., & Klug, G. (1995). Neuropsychological deficit and academic performance in children and adolescents following traumatic brain injury. Journal of Pediatric Psychology, 20(6), 753–767. doi:10.1093/jpepsy/20.6.753.

    CAS  PubMed  Google Scholar 

  • Kinsella, G., Prior, M., Sawyer, M., Ong, B., Murtagh, D., Eisenmajer, R., & Klug, G. (1997). Predictors and indicators of academic outcome in children 2 years following traumatic brain injury. Journal of the International Neuropsychological Society, 3(6), 608–616. Retrieved from: http://journals.cambridge.org.ezp.lib.unimelb.edu.au/action/displayJournal?jid = INS.

    CAS  PubMed  Google Scholar 

  • Koch, H. L., & Ufkess, J. (1926). A comparative study of stylus maze learning by blind and seeing subjects. Journal of Experimental Psychology, 9(2), 118–131. doi:10.1037/h0075473.

    Google Scholar 

  • Konow, A., & Pribram, K. H. (1970). Error recognition and utilization produced by injury to the frontal cortex in man. Neuropsychologia, 8(4), 489–491. doi:10.1016/0028-3932(70)9004-8.

    CAS  PubMed  Google Scholar 

  • Lambert, J. F., & Ewart, P. H. (1934). Part I: The effect of verbal instruction upon stylus maze learning. The Journal of General Psychology, 6(2), 377–399. doi:10.1080/00221309.1932.9711879.

    Google Scholar 

  • Landis, C., & Erlick, D. (1950). An analysis of the Porteus Maze-Test as affected by psychosurgery. The American Journal of Psychology, 64(4), 557–566. Retrieved from: http://www.jstor.org/stable/1418870.

  • Lashley, K. S. (1923). The behavioristic interpretation of consciousness I. The Psychological Review, 30(4), 234–272. doi:10.1037/h007383.

    Google Scholar 

  • Lashley, K. S. (1943). Studies of cerebral functioning in learning. XII. Loss of maze habit after occipital lesion in blind rats. The Journal of Comparative Neurology, 79(3), 431–462. doi:10.1002/cne.900790309.

    Google Scholar 

  • Lezak, M. D. (1982). The problem of assessing executive functions. International Journal of Psychology, 17, 281–297. doi:10.1080/00207598208247445.

    Google Scholar 

  • Lipton, M. L., Gulko, E., Zimmerman, M. E., Friedman, B. W., Kim, M., Gellella, E., & Branch, C. A. (2009). Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Neuroradiology, 252(3), 816–824. doi:10.1148/radiol.2523081584.

    Google Scholar 

  • Lockard, R. B. (1971). The fall of comparative psychology: Is there a message for us all? American Psychologist, 26(2), 168–179. doi:10.1037/h0030816.

    Google Scholar 

  • Luciana, M., & Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in 4-to 8-year-old children. Neuropsychologia, 36(3), 273–293. doi:10.1016/S0028-3932(97)00109-7.

    CAS  PubMed  Google Scholar 

  • Luciana, M., & Nelson, C. A. (2002). Assessment of Neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: Performance in 4- to 12-year-old children. Developmental Neuropsychology, 22(3), 595–624. doi:10.1207/S15326942DN2203_3.

    PubMed  Google Scholar 

  • Luria, A. R. (1963). Restoration of Function after Brain Injury. Oxford, England: Macmillan.

    Google Scholar 

  • Luria, A. R. (1973). The Working Brain: An Introduction to Neuropsychology. New York: Basic Books.

    Google Scholar 

  • Mann, C. W., & Jewell, W. O. (1941). Configural aspects of human learning on the electrical maze. American Journal of Psychology, 54(4), 536–545. Retrieved from: http://www.jstor.org/stable/1417203

  • Marcovitch, S., & Zelazo, P. D. (2009). A hierarchical competing systems model of the emergence of early development of executive function. Developmental Science, 12(1), 1–18. doi:10.1111/j.1467-7687.2008.00754.x.

    PubMed Central  PubMed  Google Scholar 

  • Maruff, P., Werth, J., Giordani, B., Caveneny, A. F., Feltner, D., & Snyder, P. J. (2006). A statistical approach for classifying change in cognitive function in individuals following pharmacologic challenge: an example with alprazolam. Psychopharmacology, 186, 7–17. doi:10.1007/s00213-006-0331-5.

    CAS  PubMed  Google Scholar 

  • Mathias, J. L., & Kent, P. S. (1998). Neuropsychological consequences of extreme weight loss and dietary restriction in patients with Anorexia Nervosa. Journal of Clinical and Experimental Neuropsychology, 20(4), 548–564. doi:10.1076/jcen.20.4.548.1476.

    CAS  PubMed  Google Scholar 

  • Mathersul, D., Palmer, D. M., Gur, R. C., Gur, R. E., Cooper, N., Gordon, E., & Williams, L. M. (2009). Explicit identification and recognition of facial emotions: II. Core domains and relationship with general cognition. Journal of Clinical and Experimental Neuropsychology, 31(3), 278–291. doi:10.1080/13803390802043619.

    PubMed  Google Scholar 

  • Mathewson, K., Dywan, J., Snyder, P. J., Tays, W., & Segalowitz, S. (2008). Aging and electrocortical response to error feedback during a spatial learning task. Psychophysiology, 45(6), 936–948. doi:10.1111/j.1469-8986.2008.00699.x.

    PubMed  Google Scholar 

  • Matson, D. T., Berk, M., & Lucas, M. D. (1997). A neuropsychological study of prefrontal lobe function in the positive and negative subtypes of schizophrenia. The Journal of Genetic Psychology, 158(4), 487–494. doi:10.1080/00221329709596685.

    Google Scholar 

  • Melrose, J. A. (1922). The organismal point of view in the study of motor and mental learning. Psychological Review, 29(5), 390–405. doi:10.1037/h0071206.

    Google Scholar 

  • Meyers, J. E., & Myers, K. E. (1995). Rey complex figure test under four different administration procedures. The Clinical Neuropsychologist, 9(1), 63–67. doi:10.1080/13854049508402059.

    Google Scholar 

  • Meyers, J. E., & Volbrecht, M. (1998). Validation of memory error patterns on the Rey Complex Figure and Recognition trial. Applied Neuropsychology, 5(3), 120–131. doi:10.1207/s15324826an0503_2.

    CAS  PubMed  Google Scholar 

  • Miles, W. (1927). The two-story duplicate maze. Tracing the stylus maze with a maximum of indirect visual guidance. Journal of Experimental Psychology, 10(5), 365–377. doi:10.1037/h0073950.

    Google Scholar 

  • Milner, B. (1965). Visually-guided maze learning in man: Effects of bilateral hippocampal, bilateral frontal, and unilateral cerebral lesions. Neuropsychologia, 3(4), 317–338. doi:10.1016/0028-3932(65)90005-9.

    Google Scholar 

  • Milner, B. (1971). Interhemisheric differences in the localization of psychological processes in man. British Medical Bulletin, 27(3), 272–277. Retrieved from: http://bmb.oxfordjournals.org.

    CAS  PubMed  Google Scholar 

  • Milner, B., Corkin, S., & Teuber, H. L. (1968). Further analysis of the hippocampal amnesiac syndrome: 14-year follow-up study of H M. Neuropsychologia, 6, 215–234. doi:10.1016/0028-3932(68)90021-3.

    Google Scholar 

  • Morrison, P. R., & Gates, G. R. (1988). Assessment of a microcomputer-based version of the Austin maze. The Journal of General Psychology, 115(3), 307–314. doi:10.1080/00221309.1988.9710567.

    CAS  PubMed  Google Scholar 

  • Muenzinger, K. F. (1927). Physical and psychological reality. Psychological Review, 34(3), 220–233. doi:10.1037/h0071975.

    Google Scholar 

  • Muenzinger, K. F., & Vine, D. O. (1941). Motivation in learning: IX. The effect of obstacles in human learning. Journal of Experimental Psychology, 29(1), 67–71. doi:10.1037/h0059118.

    Google Scholar 

  • Newcombe, F., Ratcliff, G., & Damasio, H. (1987). Dissociable visual and spatial impairments following right posterior cerebral lesions: clinical, neuropsychological and anatomical evidence. Neuropsychologia, 25(1B), 149–161. doi:10.1016/0028-3932(87)90127-8.

    CAS  PubMed  Google Scholar 

  • Newcombe, F., & Russell, R. (1969). Dissociated visual perceptual and spatial deficits in focal lesions of the right hemisphere. Journal of Neurology, Neurosurgery, and Psychiatry, 32, 73–81. Retrieved from: jnnp.bmj.com.

    PubMed Central  Google Scholar 

  • O’Brian, C. E., Bowden, S. C., Bardenhagen, F. J., & Cook, M. J. (2003). Neuropsychological correlates of hippocampal and rhinal cortex volumes in patients with mesial temporal sclerosis. Hippocampus, 13, 892–904. doi:10.1002/hipo.10128.

    Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon.

    Google Scholar 

  • Olton, D. S. (1985). The temporal context of spatial memory. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 308(1135), 79–86. doi:10.1098/rstb.1985.0011.

    Google Scholar 

  • Orbach, J. O. (1955). Nonvisual functioning of occipital cortex in the monkey. Proceedings of the National Academy of Sciences of the United States of America, 41(5), 264–267. Retrieved from: http://www.jstor.org/stable/89113

  • Orbach, J. O. (1959). Disturbances of the maze habit following occipital cortex removals in blind monkeys. A.M.A. Archives of Neurology and Psychiatry, 81(1), 49–54. Retrieved from: http://archneurpsyc.jamanetwork.com.

    CAS  PubMed  Google Scholar 

  • Österberg, K., Karlson, B., & Hansen, A. M. (2009). Cognitive performance in patients with burnout, in relation to salivary cortisol. Stress, 12(1), 70–81. doi:10.1080/10253890802049699.

    PubMed  Google Scholar 

  • Österberg, K., Ørbæk, P., & Karlson, B. (2002). Neuropsychological Test Performance of Swedish Multiple Chemical Sensitivity Patients—An Exploratory Study. Applied Neuropsychology, 9(3), 139–147. doi:10.1207/S15324826AN0903_2.

    PubMed  Google Scholar 

  • Österberg, K., Ørbæk, P., Karlson, B., Bergendorf, U., & Seger, L. (2000). A comparison of neuropsychological tests for the assessment of chronic toxic encephalopathy. American Journal of Industrial Medicine, 38(6), 666–680. doi:10.1002/1097-0274(200012)38:6<666::AID-AJIM7>3.0.CO;2-8.

    PubMed  Google Scholar 

  • Paul, R. H., Brickman, A. M., Cohen, R. A., Williams, L. M., Niaura, R., Pogun, S., & Gordon, E. (2006). Cognitive status of younger and older cigarette smokers: Data from the international brain database. Journal of Clinical Neuroscience, 13, 457–465. doi:10.1016/j.jocn.2005.04.012.

    PubMed  Google Scholar 

  • Paul, R., Grieve, S. M., Chaudary, B., Gordon, N., Lawrence, J., Cooper, N., & Gordon, E. (2009). Relative contributions of the cerebellar vermis and prefrontal lobe volumes on cognitive function across the adult lifespan. Neurobiology of Aging, 30(3), 457–465. doi:10.1016/j.neurobiolaging.2007.07.017.

    PubMed  Google Scholar 

  • Paul, R. H., Lawrence, J., Williams, L. M., Richard, C. C., Cooper, N., & Gordon, E. (2005). Preliminary validity of “IntegneuroTM”: A new computerized battery of neurocognitive tests. International Journal of Neuroscience, 115, 1549–1567. doi:10.1080/00207450590957890.

    PubMed  Google Scholar 

  • Pepper, S. C. (1934). The conceptual framework of Tolman’s purposive behaviorism. Psychological Review, 41, 108–133. doi:10.1037/h0075220.

    Google Scholar 

  • Perrin, F. A. C. (1914). An experimental and introspective study of the human learning process in the maze. Psychological Monographs, 16(70), 1–97.

    Google Scholar 

  • Perrin, F. A. C. (1923). The Psychology of motivation. Psychological Review, 30(3), 176–191. doi:10.1037/h0072475.

    Google Scholar 

  • Perry, R. B. (1918). Docility and purposiveness. The Psychological Review, 25(2), 1–20. doi:10.1037/h0072690.

    Google Scholar 

  • Peters, H. N., & McLean, L. (1935). An experiment on orientation in stylus maze learning. Journal of Experimental Psychology, 18(5), 633–637. doi:10.1037/h0060054.

    Google Scholar 

  • Peterson, J. (1920). The backward elimination of errors in mental maze learning. Journal of Experimental Psychology, 3, 257–280. doi:10.1037/h0072487.

    Google Scholar 

  • Peterson, J. (1922). Intelligence and learning. Psychological Review, 29(5), 336–389. doi:10.1037/h0069483.

    Google Scholar 

  • Pietrzak, R. H., Cohen, H., & Snyder, P. J. (2007). Spatial learning efficiency and error monitoring in normal aging: An investigation using a novel hidden maze learning test. Archives of Clinical Neuropsychology, 22, 235–245. doi:10.1016/j.acn.2007.01.018.

    PubMed  Google Scholar 

  • Pietrzak, R. H., Maruff, P., Mayes, L. C., Roman, S. A., Sosa, J. A., & Snyder, P. J. (2008a). An examination of the construct validity and factor structure of the Groton Maze Learning Test, a new measure of spatial working memory, learning efficiency, and error monitoring. Archives of Clinical Neuropsychology, 23(4), 433–445. doi:10.1016/j.acn.2008.03.002.

    PubMed  Google Scholar 

  • Pietrzak, R. H., Maruff, P., & Snyder, P. J. (2009a). Convergent validity and effect of instruction modification on the Groton Maze Learning Test: A new measure of spatial working memory and error monitoring. International Journal of Neuroscience, 119, 1137–1149. doi:10.1080/00207450902841269.

    PubMed  Google Scholar 

  • Pietrzak, R. H., Snyder, P. J., Jackson, C. E., Olver, J., Norman, T., Piskulic, D., & Maruff, P. (2009b). Stability of cognitive impairment in chronic schizophrenia over brief and intermediate re-test intervals. Human Psychopharmacology, 24, 113–121. doi:10.1002/hup.998.

    PubMed  Google Scholar 

  • Pietrzak, R. H., Sprague, A., & Snyder, P. J. (2008b). Trait impulsiveness and executive function in healthy young adults. Journal of Research in Personality, 42, 1347–1351. Retrieved from: http://library.cogstate.com/private/publications/Pietrzak.

    Google Scholar 

  • Porteus, S. D. (1918). The measurement of intelligence: six hundred and fifty-three children examined by the Binet and Porteus tests. Journal of Educational Psychology, 9(1), 13–31. doi:10.1037/h0075363.

    Google Scholar 

  • Porteus, S. D. (1958). What do the maze tests measure? Australian Journal of Psychology, 10(3), 245–256.

    Google Scholar 

  • Porteus, S. D. (1965). Porteus Maze Test. Fifty Years Application. California: Pacific Books.

    Google Scholar 

  • Porteus, S. D., & Kepner, R. M. (1944). Mental changes after bilateral lobotomy. Genetic Psychology Monographs, 29, 3–115.

    Google Scholar 

  • Ratcliff, G., & Newcombe, F. (1973). Spatial orientation in man: effects of left, right, and bilateral posterior cerebral lesions. Journal of Neurology, Neurosurgery and Psychiatry, 36(3), 448–454. doi:10.1136/jnnp.36.3.448.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Razran, G. H. S. (1936). Attitudinal control of human conditioning. Journal of Psychology, 2, 27–37. doi:10.1080/00223980.1936.9917464.

    Google Scholar 

  • Razran, G. H. S. (1939). Studies in configural conditioning. II. The effect of subjects’ attitudes and of task-sets upon configural conditioning. Journal of Experimental Psychology, 24(1), 95–105. doi:10.1037/h0062932.

    Google Scholar 

  • Rettew, D. C., Cheslow, D. L., Rappoport, J. L., Leonard, H. L., & Lenane, M. C. (1991). Neuropsychological test performance in trichotillomania: A further link with obsessive-compulsive disorder. Journal of Anxiety Disorders, 5, 225–235. Retrieved from: http://www.sciencedirect.com.ezp.lib.unimelb.edu.au/science/journal/08876185

  • Ruckmick, C. A. (1921). II. William James. In Benteley, M. and the members of the Psychological Seminary: Dynamic Principles in Recent Psychology. Psychological Monographs: Critical and Experimental Studies in Psychology From the University of Illinois. Princeton N. J: Psychological Review Company, (pp 3–5)

  • Ruckmick, C. A. (1927). Some suggestions in Laboratory Apparatus. The American Journal of Psychology, 38(4), 647–648. Retrieved from: http://www.jstor.org/stable/1414400

  • Saling, M. M. (2009). Verbal memory in mesial temporal lobe epilepsy: beyond material specificity. Brain, 132(3), 570–582. doi:10.1093/brain/awp012.

    PubMed  Google Scholar 

  • Sartian, A. Q. (1940). The conception of the true path and efficiency in maze learning. Journal of Experimental Psychology, 26(1), 74–93. doi:10.1037/h0063196.

    Google Scholar 

  • Schofield, P. R., Williams, L. M., Paul, R. H., Gatt, J. M., Brown, K., Luty, A., & Gordon, E. (2009). Disturbances in selective information processing associated with the BDNF Val66Met polymorphism: Evidence from cognition, the P300 and fronto-hippocampal systems. Biological Psychology, 80, 176–188. doi:10.1061/j.biopsych.2008.09.001.

    PubMed  Google Scholar 

  • Schroder, M. D., Snyder, P. J., Sielski, I., & Mayes, L. (2004). Impaired performance of children exposed in utero to cocaine on a novel test of visuospatial working memory. Brain and Cognition, 55, 409–412. doi:10.1016/j.bandc.2004.02.062.

    PubMed  Google Scholar 

  • Scott, T. C. (1930). The retention and recognition of patterns in maze learning. Journal of Experimental Psychology, 13(2), 164–207. doi:10.1037/h0071831.

    Google Scholar 

  • Seckfort, D. L., Paul, R., Grieve, S. M., Vanderberg, B. M., Bryant, R. A., Williams, L. M., & Gordon, E. (2008). Early life stress on brain structure and function across the lifespan: A preliminary study. Brain Imaging and Behavior, 2, 49–58. doi:10.1007/s11682-007-9015-y.

    Google Scholar 

  • Semmes, J., Weinstein, S., Gent, L., & Teuber, H.-L. (1955). Spatial orientation in man after cerebral injury: I. Analysis by locus of lesion. The Journal of Psychology: Interdisciplinary and Applied, 39(1), 227–244. doi:10.1080/00223980.1955.9916172.

    Google Scholar 

  • Silverstein, S. M., Berten, S., Olson, P., Paul, R., Williams, L. M., Cooper, N., & Gordon, E. (2007). Development and validation of a World-Wide-Web-based neurocognitive assessment battery: WebNeuro. Behavioral Research Methods, 39(4), 940–949. doi:10.3758/BF03192989.

    Google Scholar 

  • Small, W. S. (1901). Experimental study of the mental processes of the rat. II. The American Journal of Psychology, 12(2), 206–239. Retrieved from: http://www.jstor.org/stable/1412534

  • Snyder, P. F., Bednar, M. M., Cromer, J. R., & Maruff, P. (2005a). Reversal of scopolamine induced deficits with a single dose of donepezil, an acetylcholinesterase inhibitor. Alzheimer’s and Dementia, 1, 126–135. doi:10.1016/j.jalz.2005.09.004.

    CAS  PubMed  Google Scholar 

  • Snyder, P. J., Jackson, C. E., Piskulic, D., Olver, J., Norman, T., & Maruff, P. (2008a). Spatial working memory and problem solving in schizophrenia: The effect of symptom stabilization with atypical antipsychotic medication. Psychiatry Research, 160(3), 316–326. doi:10.1016/j.psychres.2007.07.011.

    CAS  PubMed  Google Scholar 

  • Snyder, A. M., Maruff, P., Pietrzak, R. H., Cromer, J. R., & Snyder, P. J. (2008b). Effect of treatment with stimulant medication on nonverbal executive function and visuomotor speed in children with attention deficit/hyperactivity disorder. Child Neuropsychology, 14(3), 211–226. doi:10.1080/09297040701220005.

    PubMed  Google Scholar 

  • Snyder, P. J., Werth, J., Giordani, B., Caveney, A. F., Feltner, D., & Maruff, P. (2005b). A method for determining the magnitude of change across different cognitive functions in clinical trials: The effect of acute administration of two different doses alprazolam. Human Psychopharmacology: Clinical and Experimental, 20, 263–273. doi:10.1002/hup.692.

    CAS  Google Scholar 

  • Spence, K. W. (1932). The order of eliminating blinds in maze learning by the rat. Journal of Comparative Psychology, 14(1), 9–27. doi:10.1037/h0075997.

    Google Scholar 

  • Stephens, S. S. (1935). The operational definition of psychological concepts. Psychological Review, 42(6), 517–527. doi:10.1037/h005697.

    Google Scholar 

  • Steinberg Chaikelson, J., & Schwartzman, A. E. (1983). Cognitive changes with aging in schizophrenia. Journal of Clinical Psychology, 39(1), 25–30. doi:10.1002/1097-4679(198301)39.

    Google Scholar 

  • Talland, G. A., Hagen, D. Q., & James, M. (1967). Performance tests of amnesiac patients with Cylert. The Journal of Nervous and Mental Disease, 144(5), 421–429. Retrieved from: http://journals.lww.com/jonmd/pages/currenttoc.aspx.

    CAS  PubMed  Google Scholar 

  • Talland, G. A., & McGuire, M. T. (1967). Tests of learning and memory with Cylert. Psychopharmacologia, 10, 445–451. doi:10.1007/BF00403986.

    CAS  PubMed  Google Scholar 

  • Tate, D. F., Conley, J., Paul, R. H., Coop, K., Zhang, S., Zhou, W., & Tashima, K. (2010). Quantitative diffusion tensor imaging tractography metrics are associated with cognitive performance among HIV-Infected patients. Brain Imaging and Behavior, 4, 68–79. doi:10.1007/s11682-009-9086-z.

    PubMed Central  PubMed  Google Scholar 

  • Teuber, H.-L. (1963). Space perception and its disturbances after brain injury in man. Neuropsychologia, 1, 47–57. doi:10.1016/0028-3932(63)90012-5.

    Google Scholar 

  • Teuber, H.-L. (1966). Alteration of perception after brain injury. In J. C. Eccles (Ed.), Brain and Conscious Experience (pp. 182–216). New York: Springer.

    Google Scholar 

  • Thomas, E., Reeve, R., Fredrickson, A., & Maruff, P. (2011). Spatial memory and executive functions in children. Child Neuropsychology, 17(6), 599–615. doi:10.1080/09297049.2011.567980.

    PubMed  Google Scholar 

  • Thomas, E., Reeve, R., Pietrzak, R., & Maruff, P. (2013). Disentangling component learning and executive processes in hidden pathway maze learning in children: A process-based approach. Child Neuropsychology, 19(6), 588–600. doi:10.1080/09297049.2012.704010.

    PubMed  Google Scholar 

  • Thomas, E., Snyder, P. J., Pietrzak, R. H., Jackson, C. E., Bednar, M., & Maruff, P. (2008). Specific impairments in visuospatial working and short-term memory following low dose scopolamine challenge in healthy older adults. Neuropsychologia, 46(10), 2476–2484. doi:10.1016/j.neuropsychologia.2008.04.010.

    PubMed  Google Scholar 

  • Thurstone, L. L. (1933). The error function in maze learning. The Journal of General Psychology, 9(2), 288–301. doi:10.1080/00221309.1933.9920938.

    Google Scholar 

  • Tilborg, P. W. V. (1936). The retention of mental and finger maze habits. Journal of Experimental Psychology, 19(3), 334–341. doi:10.1037/h0059048.

    Google Scholar 

  • Tolman, E. C. (1938). The determiners of behavior at a choice point. Psychological Review, 45(1), 1–41. Retrieved from: http://psycnet.apa.org/journals/rev/45/1/.

    Google Scholar 

  • Tolman, E. C. (1948). Cognitive maps in rats and men. The Psychological Review, 55(4), 189–208. Retrieved from: http://psychclassics.yorku.ca/Tolman/Maps/maps.htm.

    CAS  Google Scholar 

  • Tolman, E. C. (1959). Performance vectors: A theoretical and experimental attack upon emphasis, effect, and repression. The American Psychologist, 14(1), 1–7. doi:10.1037/h0044061.

    Google Scholar 

  • Tolman, E. C., Hall, C. S., & Bretnall, E. P. (1932). A disproof of the law of effect and a substitution of the laws of emphasis, motivation and disruption. Journal of Experimental Psychology, 15(6), 601–614. doi:10.1037/h0073609.

    Google Scholar 

  • Trumball Ladd, G. (1894). President’s address before the New York meeting of the American Psychological Association. The Psychological Reviews, 1(1), 1–21. doi:10.1037/h0064711.

    Google Scholar 

  • Tucker, A., Kinsella, G., Gawith, M., & Harrison, G. (1987). Performance on the Austin Maze: Steps towards normative data. Australian Psychologist, 22(3), 353–359. doi:10.1080/00050068708259536.

    Google Scholar 

  • Van Horn, J. D., Gold, J. M., Esposito, J. L., Ostrem, V. M., Mattay, V., Weinberger, D. R., & Berger, K. F. (1998). Changing patterns of brain activation during maze learning. Brain Research, 793(1–2), 29–38. doi:10.1016/S0006-8993(98)00051-1.

    PubMed  Google Scholar 

  • Voeks, V. W. (1948). Postremity, Recency, and Frequency as bases for prediction in the maze situation. Journal of Experimental Psychology, 38(5), 495–510. Retrieved from: http://psycnet.apa.org/journals/xge/38/5/.

    CAS  PubMed  Google Scholar 

  • Wallesch, C.-W., Karnath, H. O., Papagno, C., Zimmerman, P., Deuschl, G., & Lucking, C. H. (1990). Parkinson’s disease patient’s behavior in a covered maze learning task. Neuropsychologia, 28(8), 839–849. doi:10.1016/0028-3932(90)90008-C.

    CAS  PubMed  Google Scholar 

  • Walsh, K. W. (1960). Cited in Darby, D., & Walsh, K. (2005). Walsh’s Neuropsychology. A Clinical Approach. (5th Edition). Edinburg: Elsevier. (pp. 149–150, 167)

  • Walsh, K. W. (1985). Understanding Brain Damage: A Primer on Neuropsychological Evaluation. Edinburough: Churchill Livingstone

  • Walton, N. H., & Bowden, S. C. (1997). Does liver dysfunction explain neuropsychological status in recently detoxified alcohol-dependent clients? Alcohol and Alcoholism, 32(3), 287–295.

    CAS  PubMed  Google Scholar 

  • Warden, C. J. (1924a). Primacy and recency as factors in cul-de-sac elimination in a stylus maze. Journal of Experimental Psychology, 7(2), 98–116. doi:10.1037/h0074915.

    Google Scholar 

  • Warden, C. J. (1924b). The relative economy of various modes of attack in the mastery of the stylus maze. Journal of Experimental Psychology, 7(4), 243–275. doi:10.1037/h0073906.

    Google Scholar 

  • Warden, C. J. (1925). Judgments of certain space relations based upon the learning of a stylus maze. Journal of Experimental Psychology, 8(6), 399–407. doi:10.1037/h0064260.

    Google Scholar 

  • Welsh, M. C., Pennington, B. F., & Grossier, D. B. (1991). A normative-developmental study of executive function: A window on prefrontal function in children. Developmental Neuropsychology, 7(2), 131–149. Retrieved from: http://www.erlbaum.com/Journals/journals/DN/dn.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, E., Snyder, P.J., Pietrzak, R.H. et al. Behavior at the Choice Point: Decision Making in Hidden Pathway Maze Learning. Neuropsychol Rev 24, 514–536 (2014). https://doi.org/10.1007/s11065-014-9272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-014-9272-7

Keywords

Navigation