Skip to main content

Advertisement

Log in

The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wong KR, Mychasiuk R, O’Brien TJ, Shultz SR, McDonald SJ, Brady RD (2020) Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res 8(1):10

    Article  Google Scholar 

  2. Ranganathan K, Loder S, Agarwal S, Wong VW, Forsberg J, Davis TA, Wang S, James AW, Levi B (2015) Heterotopic ossification: basic-science principles and clinical correlates. J Bone Joint Surg 97(13):1101–1111

    Article  PubMed  Google Scholar 

  3. Salisbury E, Rodenberg E, Sonnet C, Hipp J, Gannon FH, Vadakkan TJ, Dickinson ME, Olmsted-Davis EA, Davis AR (2011) Sensory nerve induced inflammation contributes to heterotopic ossification. J Cell Biochem 112(10):2748–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Olmsted-Davis EA, Salisbury EA, Hoang D, Davis EL, Lazard Z, Sonnet C, Davis TA, Forsberg JA, Davis AR (2017) Progenitors in peripheral nerves launch heterotopic ossification. Stem Cells Transl Med 6(4):1109–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dey D, Wheatley BM, Cholok D, Agarwal S, Yu PB, Levi B, Davis TA (2017) The traumatic bone: trauma-induced heterotopic ossification. Transl Res 186:95–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu Y, Huang M, He W, He C, Chen K, Hou J, Huang M, Jiao Y, Liu R, Zou N, Liu L, Li C (2022) Heterotopic ossification: clinical features, basic researches, and mechanical stimulations. Front Cell Develop Biol 10:1

    Google Scholar 

  7. Wan QQ, Qin WP, Ma YX, Shen MJ, Li J, Zhang ZB, Chen JH, Tay FR, Niu LN, Jiao K (2021) Crosstalk between bone and nerves within bone. Adv Sci. https://doi.org/10.1002/advs.202003390

    Article  Google Scholar 

  8. Lazard ZW, Olmsted-Davis EA, Salisbury EA, Gugala Z, Sonnet C, Davis EL, Beal E, Ubogu EE, Davis AR (2015) Osteoblasts have a neural origin in heterotopic ossification. Clin Orthop Relat Res 473(9):2790–2806

    Article  PubMed  PubMed Central  Google Scholar 

  9. Salisbury E, Sonnet C, Heggeness M, Davis AR, Olmsted-Davis E (2010) Heterotopic ossification has some nerve. Crit Rev Eukaryot Gene Expr 20(4):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee S, Hwang C, Marini S, Tower RJ, Qin Q, Negri S, Pagani CA, Sun Y, Stepien DM, Sorkin M, Kubiak CA, Visser ND, Meyers CA, Wang Y, Rasheed HA, Xu J, Miller S, Huber AK, Minichiello L, Cederna PS, Kemp SWP, Clemens TL, James AW, Levi B (2021) NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nat Commun. https://doi.org/10.1038/s41467-021-25143-z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu Q, Lei L, Yu T, Jiang T, Kang Y (2018) Effect of brain-derived neurotrophic factor on the neurogenesis and osteogenesis in bone engineering. Tissue Eng Part A 24(15–16):1283–1292

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Yang K, Li G, Liu R, Liu J, Li J, Tang M, Zhao M, Song J, Wen X (2020) p75NTR−/− mice exhibit an alveolar bone loss phenotype and inhibited PI3K/Akt/β-catenin pathway. Cell Prolif. https://doi.org/10.1111/cpr.12800

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wu K, Huang D, Zhu C, Kasanga EA, Zhang Y, Yu E, Zhang H, Ni Z, Ye S, Zhang C, Hu J, Zhuge Q, Yang J (2019) NT3P75–2 gene-modified bone mesenchymal stem cells improve neurological function recovery in mouse TBI model. Stem Cell Res Ther. https://doi.org/10.1186/s13287-019-1428-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Abeynayake N, Arthur A, Gronthos S (2021) Crosstalk between skeletal and neural tissues is critical for skeletal health. Bone. https://doi.org/10.1016/j.bone.2020.115645

    Article  PubMed  Google Scholar 

  15. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309

    Article  CAS  PubMed  Google Scholar 

  16. Gautschi OP, Toffoli AM, Joesbury KA, Skirving AP, Filgueira L, Zellweger R (2007) Osteoinductive effect of cerebrospinal fluid from brain-injured patients. J Neurotrauma 24(1):154–162

    Article  PubMed  Google Scholar 

  17. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao N, Le QT (2016) Neurotrophic factors and their potential applications in tissue regeneration. Arch Immunol Ther Exp 64(2):89–99

    Article  MathSciNet  CAS  Google Scholar 

  19. Serre CM, Farlay D, Delmas PD, Chenu C (1999) Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone 25(6):623–629

    Article  CAS  PubMed  Google Scholar 

  20. Wu M, Chen G, Li YP (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. https://doi.org/10.1038/boneres.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lowery JW, Rosen V (2018) The BMP pathway and its inhibitors in the skeleton. Physiol Rev 98(4):2431–2452

    Article  CAS  PubMed  Google Scholar 

  22. Rosen V (2006) BMP and BMP inhibitors in bone. Ann N Y Acad Sci 1068(1):19–25

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, Kamiya N, Fukuda T, Mishina Y, Peterson RT, Bloch KD (2008) BMP type I receptor inhibition reduces heterotopic ossification. Nat Med 14(12):1363–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Li F, Xie L, Crane J, Zhen G, Mishina Y, Deng R, Gao B, Chen H, Liu S, Yang P, Gao M, Tu M, Wang Y, Wan M, Fan C, Cao X (2018) Inhibition of overactive TGF-β attenuates progression of heterotopic ossification in mice. Nat Commun. https://doi.org/10.1038/s41467-018-02988-5

    Article  PubMed  PubMed Central  Google Scholar 

  25. Balboni TA, Gobezie R, Mamon HJ (2006) Heterotopic ossification: pathophysiology, clinical features, and the role of radiotherapy for prophylaxis. Int J Radiat Oncol Biol Phys 65(5):1289–1299

    Article  PubMed  Google Scholar 

  26. Cadosch D, Toffoli AM, Gautschi OP, Frey SP, Zellweger R, Skirving AP, Filgueira L (2010) Serum after traumatic brain injury increases proliferation and supports expression of osteoblast markers in muscle cells. J Bone Joint Surg Am 92(3):645–653

    Article  PubMed  Google Scholar 

  27. Huang H, Cheng WX, Hu YP, Chen JH, Zheng ZT, Zhang P (2018) Relationship between heterotopic ossification and traumatic brain injury. J Orthop Trans 12:16–25

    Google Scholar 

  28. Morioka K, Marmor Y, Sacramento JA, Lin A, Shao T, Miclau KR, Clark DR, Beattie MS, Marcucio RS, Miclau T, Ferguson AR, Bresnahan JC, Bahney CS (2019) Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma. Sci Rep 9(1):12199

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Kesavan C, Gomez GA, Pourteymoor S, Mohan S (2023) Development of an animal model for traumatic brain injury augmentation of heterotopic ossification in response to local injury. Biomedicines 11(3):943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haffner-Luntzer M, Weber B, Morioka K, Lackner I, Fischer V, Bahney C, Ignatius A, Kalbitz M, Marcucio R, Miclau T (2023) Altered early immune response after fracture and traumatic brain injury. Front Immunol. https://doi.org/10.3389/fimmu.2023.1074207

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cao G, Zhang S, Wang Y, Quan S, Yue C, Yao J, Alexander PG, Tan H (2023) Pathogenesis of acquired heterotopic ossification: Risk factors, cellular mechanisms, and therapeutic implications. Bone 168:10

    Article  Google Scholar 

  32. Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scarfì S (2016) Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J Stem Cells. https://doi.org/10.4252/wjsc.v8.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tannoury CA, An HS (2014) Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J 14(3):552–559

    Article  PubMed  Google Scholar 

  35. Cadosch D, Gautschi OP, Thyer M, Song S, Skirving AP, Filgueira L, Zellweger R (2009) Humoral factors enhance fracture-healing and callus formation in patients with traumatic brain injury. J Bone Joint Surg Am 91(2):282–288

    Article  PubMed  Google Scholar 

  36. Gadomski S, Fielding C, García-García A, Korn C, Kapeni C, Ashraf S, Villadiego J, Toro RD, Domingues O, Skepper JN, Michel T, Zimmer J, Sendtner R, Dillon S, Poole KES, Holdsworth G, Sendtner M, Toledo-Aral JJ, De Bari C, McCaskie AW, Robey PG, Méndez-Ferrer S (2022) A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell 29(4):528-544.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Xu J, Ruan YC, Yu MK, O’Laughlin M, Wise H, Chen D, Tian L, Shi D, Wang J, Chen S, Feng JQ, Chow DHK, Xie X, Zheng L, Huang L, Huang S, Leung K, Lu N, Zhao L, Li H, Zhao D, Guo X, Chan K, Witte F, Chan HC, Zheng Y, Qin L (2016) Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med 22(10):1160–1169

    Article  PubMed  PubMed Central  Google Scholar 

  38. Almangour W, Schnitzler A, Salga M, Debaud C, Denormandie P, Genêt F (2016) Recurrence of heterotopic ossification after removal in patients with traumatic brain injury: a systematic review. Ann Phys Rehabil Med 59(4):263–269

    Article  PubMed  Google Scholar 

  39. Liu P, Jiang B, Ma J, Lin P, Zhang Y, Shao C, Sun W, Gong Y (2016) S113R mutation in Slc33a1 leads to neurodegeneration and augmented BMP signaling in a mouse model. Dis Models Mech. https://doi.org/10.1242/dmm.026880

    Article  Google Scholar 

  40. Molligan J, Mitchell R, Schon L, Achilefu S, Zahoor T, Cho Y, Loube J, Zhang Z (2016) Influence of bone and muscle injuries on the osteogenic potential of muscle progenitors: contribution of tissue environment to heterotopic ossification. Stem Cells Transl Med 5(6):745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tőkési N, Kozák E, Fülöp K, Dedinszki D, Hegedűs N, Király B, Szigeti K, Ajtay K, Jakus Z, Zaworski J, Letavernier E, Pomozi V, Váradi A (2020) Pyrophosphate therapy prevents trauma-induced calcification in the mouse model of neurogenic heterotopic ossification. J Cell Mol Med 24(20):11791–11799

    Article  PubMed  PubMed Central  Google Scholar 

  42. Salazar VS, Gamer LW, Rosen V (2016) BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 12(4):203–221

    Article  CAS  PubMed  Google Scholar 

  43. De La Vega RE, van Griensven M, Zhang W, Coenen MJ, Nagelli CV, Panos JA, Peniche Silva CJ, Geiger J, Plank C, Evans CH, Balmayor ER (2022) Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2. Sci Adv. https://doi.org/10.1126/sciadv.abl6242

    Article  PubMed  Google Scholar 

  44. Dai G, Li Y, Liu J, Zhang C, Chen M, Lu P, Rui Y (2020) Higher BMP expression in tendon stem/progenitor cells contributes to the increased heterotopic ossification in achilles tendon with aging. Front Cell Develop Biol. https://doi.org/10.3389/fcell.2020.570605

    Article  Google Scholar 

  45. Prados B, del Toro R, MacGrogan D, Gómez-Apiñániz P, Papoutsi T, Muñoz-Cánoves P, Méndez-Ferrer S, de la Pompa JL (2021) Heterotopic ossification in mice overexpressing Bmp2 in Tie2+ lineages. Cell Death Dis. https://doi.org/10.1038/s41419-021-04003-0

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang J, Zhao Y, Hou X, Chen B, Xiao Z, Han J, Shi C, Liu J, Miao Q, Dai J (2014) The inhibition effects of insulin on BMP2-induced muscle heterotopic ossification. Biomaterials 35(34):9322–9331

    Article  CAS  PubMed  Google Scholar 

  47. Bhakta G, Lim ZXH, Rai B, Lin T, Hui JH, Prestwich GD, van Wijnen AJ, Nurcombe V, Cool SM (2013) The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphogenetic protein-2 and ectopic bone formation. Acta Biomater 9(11):9098–9106

    Article  CAS  PubMed  Google Scholar 

  48. Rauner M, Baschant U, Roetto A, Pellegrino RM, Rother S, Salbach-Hirsch J, Weidner H, Hintze V, Campbell G, Petzold A, Lemaitre R, Henry I, Bellido T, Theurl I, Altamura S, Colucci S, Muckenthaler MU, Schett G, Komla-Ebri DSK, Bassett JHD, Williams GR, Platzbecker U, Hofbauer LC (2019) Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signalling. Nat Metab 1(1):111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiao L, Michalski N, Kronander E, Gjoni E, Genoud C, Knott G, Schneggenburger R (2013) BMP signaling specifies the development of a large and fast CNS synapse. Nat Neurosci 16(7):856–864

    Article  CAS  PubMed  Google Scholar 

  50. Sun R, Jia T, Dart B, Shrestha S, Bretches M, Heggeness MH, Yang S-Y (2021) Human peripheral nerve-derived pluripotent cells can be stimulated by in vitro bone morphogenetic protein-2. Bioengineering 8(10):10

    Article  Google Scholar 

  51. Norris EH, Strickland S (2017) Fibrinogen in the nervous system: glia beware. Neuron 96(5):951–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Su YW, Chung R, Ruan CS, Chim SM, Kuek V, Dwivedi PP, Hassanshahi M, Chen KM, Xie Y, Chen L, Foster BK, Rosen V, Zhou XF, Xu J, Xian CJ (2016) Neurotrophin-3 induces BMP-2 and VEGF activities and promotes the bony repair of injured growth plate cartilage and bone in rats. J Bone Miner Res 31(6):1258–1274

    Article  CAS  PubMed  Google Scholar 

  53. Davis EL, Davis AR, Gugala Z, Olmsted-Davis EA (2018) Is heterotopic ossification getting nervous?: The role of the peripheral nervous system in heterotopic ossification. Bone 109:22–27

    Article  PubMed  Google Scholar 

  54. Tannous O, Stall AC, Griffith C, Donaldson CT, Castellani RJ, Pellegrini VD (2013) Heterotopic bone formation about the hip undergoes endochondral ossification: a rabbit model. Clin Orthop Relat Res 471(5):1584–1592

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lin L, Shen Q, Leng H, Duan X, Fu X, Yu C (2011) Synergistic inhibition of endochondral bone formation by silencing Hif1α and Runx2 in trauma-induced heterotopic ossification. Mol Ther 19(8):1426–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu R, Hu J, Zhou X, Yang Y (2018) Heterotopic ossification: Mechanistic insights and clinical challenges. Bone 109:134–142

    Article  PubMed  Google Scholar 

  57. Banham-Hall N, Kothwal K, Pipkin J, Bentley J, Dickens GL (2013) Prevalence of low bone mineral density in inpatients with traumatic brain injury receiving neurobehavioural rehabilitation: a postoperative, observational study. Physiotherapy 99(4):328–334

    Article  PubMed  Google Scholar 

  58. McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, Leonard AV, Brady RD, Corrigan F (2020) Beyond the brain: peripheral interactions after traumatic brain injury. J Neurotrauma 37(5):770–781

    Article  PubMed  Google Scholar 

  59. Yu H, Watt H, Mohan S (2014) The negative impact of traumatic brain injury (TBI) on bone in a mouse model. Brain Inj 28(2):244–251

    Article  PubMed  Google Scholar 

  60. Bajwa NM, Kesavan C, Mohan S (2018) Long-term consequences of traumatic brain injury in bone metabolism. Front Neurol 9:115

    Article  PubMed  PubMed Central  Google Scholar 

  61. Smith É, Comiskey C, Carroll Á (2016) Prevalence of and risk factors for osteoporosis in adults with acquired brain injury. Ir J Med Sci 185(2):473–481

    Article  CAS  PubMed  Google Scholar 

  62. Tabuchi M, Miyazawa K, Kimura M, Maeda H, Kawai T, Kameyama Y, Goto S (2005) Enhancement of crude bone morphogenetic protein-induced new bone formation and normalization of endochondral ossification by bisphosphonate treatment in osteoprotegerin-deficient mice. Calcif Tissue Int 77(4):239–249

    Article  CAS  PubMed  Google Scholar 

  63. Yuan P, Wang WC, Li ZH, Mao XZ (2009) Could insertion of the particles that induce osteolysis be a new treatment option in heterotopic ossification? Med Hypotheses 73(1):27–28

    Article  CAS  PubMed  Google Scholar 

  64. Oleson CV, Seidel BJ, Zhan T (2013) Association of vitamin D deficiency, secondary hyperparathyroidism, and heterotopic ossification in spinal cord injury. J Rehabil Res Dev 50(9):1177–1186

    Article  PubMed  Google Scholar 

  65. Benayahu D, Fried A, Wientroub S (1995) PTH and 1,25(OH)2 vitamin D priming to growth factors differentially regulates the osteoblastic markers in MBA-15 clonal subpopulations. Biochem Biophys Res Commun 210(1):197–204

    Article  CAS  PubMed  Google Scholar 

  66. Canalis E (2010) Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab 95(4):1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126(6):1611–1623

    Article  CAS  PubMed  Google Scholar 

  68. Ansari N, Ho PWM, Crimeen-Irwin B, Poulton IJ, Brunt AR, Forwood MR, Divieti Pajevic P, Gooi JH, Martin TJ, Sims NA (2017) Autocrine and paracrine regulation of the murine skeleton by osteocyte-derived parathyroid hormone-related protein. J Bone Mineral Res 33(1):137–153

    Article  Google Scholar 

  69. Martin TJ, Allan EH, Ho PWM, Gooi JH, Quinn JMW, Gillespie MT, Krasnoperov V, Sims NA (2009) Communication between EphrinB2 and EphB4 within the osteoblast lineage. In: Choi Y (ed) Osteoimmunology. Springer, Boston, pp 51–60

    Chapter  Google Scholar 

  70. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382(6590):448–452

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Trentz OA, Handschin AE, Bestmann L, Hoerstrup SP, Trentz OL, Platz A (2005) Influence of brain injury on early posttraumatic bone metabolism. Crit Care Med 33(2):399–406

    Article  CAS  PubMed  Google Scholar 

  72. Sundaram VK, Schütza V, Schröter NH, Backhaus A, Bilsing A, Joneck L, Seelbach A, Mutschler C, Gomez-Sanchez JA, Schäffner E, Sánchez EE, Akkermann D, Paul C, Schwagarus N, Müller S, Odle A, Childs G, Ewers D, Kungl T, Sitte M, Salinas G, Sereda MW, Nave KA, Schwab MH, Ost M, Arthur-Farraj P, Stassart RM, Fledrich R (2023) Adipo-glial signaling mediates metabolic adaptation in peripheral nerve regeneration. Cell Metab. https://doi.org/10.1016/j.cmet.2023.10.017

    Article  PubMed  PubMed Central  Google Scholar 

  73. Handschin AE, Trentz OA, Hemmi S, Wedler V, Trentz O, Giovanoli P, Wanner GA (2007) Leptin increases extracellular matrix mineralization of human osteoblasts from heterotopic ossification and normal bone. Ann Plast Surg 59(3):329–333

    Article  CAS  PubMed  Google Scholar 

  74. Agarwal S, Loder S, Li J, Brownley C, Peterson JR, Oluwatobi E, Drake J, Cholok D, Ranganathan K, Sung HH, Goulet J, Li S, Levi B (2015) Diminished chondrogenesis and enhanced osteoclastogenesis in leptin-deficient diabetic mice (ob/ob) impair pathologic trauma-induced heterotopic ossification. Stem Cells Develop 24(24):2864–2872

    Article  CAS  Google Scholar 

  75. Nishimura R, Hata K, Takahata Y, Murakami T, Nakamura E, Ohkawa M, Ruengsinpinya L (2020) Role of signal transduction pathways and transcription factors in cartilage and joint diseases. Int J Mol Sci 21(4):1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Di Rocco F, Biosse Duplan M, Heuzé Y, Kaci N, Komla-Ebri D, Munnich A, Mugniery E, Benoist-Lasselin C, Legeai-Mallet L (2014) FGFR3 mutation causes abnormal membranous ossification in achondroplasia. Hum Mol Gene 23(11):2914–2925

    Article  Google Scholar 

  77. Mugniery E, Dacquin R, Marty C, Benoist-Lasselin C, de Vernejoul M-C, Jurdic P, Munnich A, Geoffroy V, Legeai-Mallet L (2012) An activating Fgfr3 mutation affects trabecular bone formation via a paracrine mechanism during growth. Hum Mol Genet 21(11):2503–2513

    Article  CAS  PubMed  Google Scholar 

  78. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24(1):677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xiao N, Le QT (2015) Neurotrophic factors and their potential applications in tissue regeneration. Arch Immunol Ther Exp 64(2):89–99

    Article  Google Scholar 

  80. Emanueli C, Schratzberger P, Kirchmair R, Madeddu P (2009) Paracrine control of vascularization and neurogenesis by neurotrophins. Br J Pharmacol 140(4):614–619

    Article  Google Scholar 

  81. Keefe K, Sheikh I, Smith G (2017) Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int J Mol Sci 18(3):1

    Article  ADS  Google Scholar 

  82. Sun S, Diggins NH, Gunderson ZJ, Fehrenbacher JC, White FA, Kacena MA (2020) No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone. https://doi.org/10.1016/j.bone.2019.115109

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lewin GR, Nykjaer A (2014) Pro-neurotrophins, sortilin, and nociception. Eur J Neurosci 39(3):363–374

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kobayashi H, Gleich GJ, Butterfield JH, Kita H (2002) Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli. Blood 99(6):2214–2220

    Article  CAS  PubMed  Google Scholar 

  85. Su YW, Zhou XF, Foster BK, Grills BL, Xu J, Xian CJ (2017) Roles of neurotrophins in skeletal tissue formation and healing. J Cell Physiol 233(3):2133–2145

    Article  PubMed  Google Scholar 

  86. Xu J, Li Z, Tower RJ, Negri S, Wang Y, Meyers CA, Sono T, Qin Q, Lu A, Xing X, McCarthy EF, Clemens TL, James AW (2022) NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv 8(11):eabl5716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang L, Zhou S, Liu B, Lei D, Zhao Y, Lu C, Tan A (2006) Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res 24(12):2238–2245

    Article  CAS  PubMed  Google Scholar 

  88. Rivera KO, Russo F, Boileau RM, Tomlinson RE, Miclau T, Marcucio RS, Desai TA, Bahney CS (2020) Local injections of β-NGF accelerates endochondral fracture repair by promoting cartilage to bone conversion. Sci Rep 10(1):22241

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cherief M, Negri S, Qin Q, Pagani CA, Lee S, Yang YP, Clemens TL, Levi B, James AW (2022) TrkA+ neurons induce pathologic regeneration after soft tissue trauma. Stem Cells Transl Med 11(11):1165–1176

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang J, Brodie C, Li Y, Zheng X, Roberts C, Lu M, Gao Q, Borneman J, Savant-Bhonsale S, Elias SB, Chopp M (2009) Bone marrow stromal cell therapy reduces proNGF and p75 expression in mice with experimental autoimmune encephalomyelitis. J Neurol Sci 279(1–2):30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu XH, Dou B, Sun NY, Gao J, Liu XL (2020) Astragalus saponin IV promotes osteogenic differentiation of bone marrow mesenchymal stem cells via miR-21/NGF/BMP2/Runx2 pathway. Acta Histochem. https://doi.org/10.1016/j.acthis.2020.151549

    Article  PubMed  Google Scholar 

  92. Grills BL, Schuijers JA, Ward AR (1997) Topical application of nerve growth factor improves fracture healing in rats. J Orthop Res 15(2):235–242

    Article  CAS  PubMed  Google Scholar 

  93. Li Z, Meyers CA, Chang L, Lee S, Li Z, Tomlinson R, Hoke A, Clemens TL, James AW (2019) Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Investig 129(12):5137–5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yasui M, Shiraishi Y, Ozaki N, Hayashi K, Hori K, Ichiyanagi M, Sugiura Y (2011) Nerve growth factor and associated nerve sprouting contribute to local mechanical hyperalgesia in a rat model of bone injury. Eur J Pain 16(7):953–965

    Article  PubMed  Google Scholar 

  95. Fitzpatrick V, Martín-Moldes Z, Deck A, Torres-Sanchez R, Valat A, Cairns D, Li C, Kaplan DL (2021) Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials. https://doi.org/10.1016/j.biomaterials.2021.120995

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tomlinson RE, Li Z, Li Z, Minichiello L, Riddle RC, Venkatesan A, Clemens TL (2017) NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1701054114

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jiang Y, Tuan RS (2019) Role of NGF-TrkA signaling in calcification of articular chondrocytes. FASEB J 33(9):10231–10239

    Article  CAS  PubMed  Google Scholar 

  98. Meyers CA, Lee S, Sono T, Xu J, Negri S, Tian Y, Wang Y, Li Z, Miller S, Chang L, Gao Y, Minichiello L, Clemens TL, James AW (2020) A neurotrophic mechanism directs sensory nerve transit in cranial bone. Cell Rep. https://doi.org/10.1016/j.celrep.2020.107696

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang D, Zhang J, Zheng MG, Sui WY, He ZD, Liu Y, Huang YL, Mu SH, Xu XZ, Zhang JS, Qu JL (2019) TrkA regulates the regenerative capacity of bone marrow stromal stem cells in nerve grafts. Neural Regen Res. https://doi.org/10.4103/1673-5374.257540

    Article  PubMed  PubMed Central  Google Scholar 

  100. McCaffrey G, Thompson ML, Majuta L, Fealk MN, Chartier S, Longo G, Mantyh PW (2014) NGF blockade at early times during bone cancer development attenuates bone destruction and increases limb use. Can Res 74(23):7014–7023

    Article  CAS  Google Scholar 

  101. Spoletini M, Taurone S, Tombolini M, Minni A, Altissimi G, Wierzbicki V, Giangaspero F, Parnigotto PP, Artico M, Bardella L, Agostinelli E, Pastore FS (2017) Trophic and neurotrophic factors in human pituitary adenomas (review). Int J Oncol 51(4):1014–1024

    Article  CAS  PubMed  Google Scholar 

  102. Novack DV (2010) Role of NF-κB in the skeleton. Cell Res 21(1):169–182

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tarapore RS, Lim J, Tian C, Pacios S, Xiao W, Reid D, Guan H, Mattos M, Yu B, Wang CY, Graves DT (2015) NF-κB has a direct role in inhibiting Bmp- and Wnt-induced matrix protein expression. J Bone Miner Res 31(1):52–64

    Article  PubMed  Google Scholar 

  104. Zhu M, Xu W, Jiang J, Wang Y, Guo Y, Yang R, Chang Y, Zhao B, Wang Z, Zhang J, Wang T, Shangguan L, Wang S (2021) Peiminine suppresses RANKL-induced osteoclastogenesis by inhibiting the NFATc1, ERK, and NF-κB signaling pathways. Front Endocrinol. https://doi.org/10.3389/fendo.2021.736863

    Article  Google Scholar 

  105. Barruet E, Morales BM, Cain CJ, Ton AN, Wentworth KL, Chan TV, Moody TA, Haks MC, Ottenhoff THM, Hellman J, Nakamura MC, Hsiao EC (2018) NF-κB/MAPK activation underlies ACVR1-mediated inflammation in human heterotopic ossification. JCI Insight. https://doi.org/10.1172/jci.insight.122958

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dai WL, Yan B, Bao YN, Fan JF, Liu JH (2020) Suppression of peripheral NGF attenuates neuropathic pain induced by chronic constriction injury through the TAK1-MAPK/NF-κB signaling pathways. Cell Commun Signal. https://doi.org/10.1186/s12964-020-00556-3

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ni H, Wang Y, An K, Liu Q, Xu L, Zhu C, Deng H, He Q, Wang T, Xu M, Zheng Y, Huang B, Fang J, Yao M (2019) Crosstalk between NFκB-dependent astrocytic CXCL1 and neuron CXCR2 plays a role in descending pain facilitation. J Neuroinflam. https://doi.org/10.1186/s12974-018-1391-2

    Article  Google Scholar 

  108. Jung EJ, Paramanantham A, Kim HJ, Shin SC, Kim GS, Jung JM, Hong SC, Chung KH, Kim CW, Lee WS (2022) Identification of growth factors, cytokines and mediators regulated by Artemisia annua L. polyphenols (pKAL) in HCT116 colorectal cancer cells: TGF-β1 and NGF-β attenuate pKAL-induced anticancer effects via NF-κB p65 upregulation. Int J Mol Sci. https://doi.org/10.3390/ijms23031598

    Article  PubMed  PubMed Central  Google Scholar 

  109. Loy TL, Vehlow D, Kauschke V, Müller M, Heiss C, Lips KS (2020) Effects of BDNF and PEC nanoparticles on osteocytes. Molecules. https://doi.org/10.3390/molecules25184151

    Article  PubMed  PubMed Central  Google Scholar 

  110. Spejo AB, Chiarotto GB, Ferreira ADF, Gomes DA, Ferreira RS, Barraviera B, Oliveira ALR (2018) Neuroprotection and immunomodulation following intraspinal axotomy of motoneurons by treatment with adult mesenchymal stem cells. J Neuroinflam. https://doi.org/10.1186/s12974-018-1268-4

    Article  Google Scholar 

  111. Fiorina P, Sharma GP, Frei AC, Narayanan J, Gasperetti T, Veley D, Amjad A, Albano K, Fish BL, Himburg HA (2021) Brain-derived neurotrophic factor promotes immune reconstitution following radiation injury via activation of bone marrow mesenchymal stem cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0259042

    Article  Google Scholar 

  112. Xiong J, Liao J, Liu X, Zhang Z, Adams J, Pacifici R, Ye K (2022) A TrkB agonist prodrug prevents bone loss via inhibiting asparagine endopeptidase and increasing osteoprotegerin. Nat Commun. https://doi.org/10.1038/s41467-022-32435-5

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kajiya M, Shiba H, Fujita T, Ouhara K, Takeda K, Mizuno N, Kawaguchi H, Kitagawa M, Takata T, Tsuji K, Kurihara H (2008) Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. J Biol Chem 283(23):16259–16267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xue F, Zhao Z, Gu Y, Han J, Ye K, Zhang Y (2021) 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. Elife. https://doi.org/10.7554/eLife.64872

    Article  PubMed  PubMed Central  Google Scholar 

  115. Sun CY, Chu ZB, She XM, Zhang L, Chen L, Ai LS, Hu Y (2012) Brain-derived neurotrophic factor is a potential osteoclast stimulating factor in multiple myeloma. Int J Cancer 130(4):827–836

    Article  CAS  PubMed  Google Scholar 

  116. Ai LS, Sun CY, Wang YD, Zhang L, Chu ZB, Qin Y, Gao F, Yan H, Guo T, Chen L, Yang D, Hu Y (2013) Gene silencing of the BDNF/TrkB axis in multiple myeloma blocks bone destruction and tumor burden in vitro and in vivo. Int J Cancer 133(5):1074–1084

    Article  CAS  PubMed  Google Scholar 

  117. Wang Y, Gao Y, Wang Y, Zhang H, Qin Q, Xu Z, Liu S, Wang X, Qu Y, Liu Y, Jiang X, He H (2023) GDNF promotes the proliferation and osteogenic differentiation of jaw bone marrow mesenchymal stem cells via the Nr4a1/PI3K/Akt pathway. Cell Signal. https://doi.org/10.1016/j.cellsig.2023.110721

    Article  PubMed  Google Scholar 

  118. Li X, Zheng Y, Zheng Y, Huang Y, Zhang Y, Jia L, Li W (2018) Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther. https://doi.org/10.1186/s13287-018-0976-0

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kim JM, Yang YS, Park KH, Oh H, Greenblatt MB, Shim JH (2019) The ERK MAPK pathway is essential for skeletal development and homeostasis. Int J Mol Sci. https://doi.org/10.3390/ijms20081803

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tang L, Wu M, Lu S, Zhang H, Shen Y, Shen C, Liang H, Ge H, Ding X, Wang Z (2021) Fgf9 negatively regulates bone mass by inhibiting osteogenesis and promoting osteoclastogenesis via MAPK and PI3K/AKT signaling. J Bone Miner Res 36(4):779–791

    Article  CAS  PubMed  Google Scholar 

  121. Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM (2020) GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res 382(1):47–56

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhang J, Wang L, Cao H, Chen N, Yan B, Ao X, Zhao H, Chu J, Huang M, Zhang Z (2019) Neurotrophin-3 acts on the endothelial-mesenchymal transition of heterotopic ossification in rats. J Cell Mol Med 23(4):2595–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang J, Wang L, Chu J, Ao X, Jiang T, Yan B, Huang M, Zhang Z (2020) Macrophage-derived neurotrophin-3 promotes heterotopic ossification in rats. Lab Invest 100(5):762–776

    Article  CAS  PubMed  Google Scholar 

  124. Zhu T, Yu D, Feng J, Wu X, Xiang L, Gao H, Zhang X, Wei M (2014) GDNF and NT-3 induce progenitor bone mesenchymal stem cell differentiation into neurons in fetal gut culture medium. Cell Mol Neurobiol 35(2):255–264

    Article  PubMed  Google Scholar 

  125. Yuan J, Huang G, Xiao Z, Lin L, Han T (2013) Overexpression of β-NGF promotes differentiation of bone marrow mesenchymal stem cells into neurons through regulation of AKT and MAPK pathway. Mol Cell Biochem 383(1–2):201–211

    Article  CAS  PubMed  Google Scholar 

  126. Zhang Z, Wang F, Huang X, Sun H, Xu J, Qu H, Yan X, Shi W, Teng W, Jin X, Shao Z, Zhang Y, Zhao S, Wu Y, Ye Z, Yu X (2023) Engineered sensory nerve guides self-adaptive bone healing via NGF-TrkA signaling pathway. Adv Sci. https://doi.org/10.1002/advs.202206155

    Article  Google Scholar 

  127. Takeda K, Shiba H, Mizuno N, Hasegawa N, Mouri Y, Hirachi A, Yoshino H, Kawaguchi H, Kurihara H (2005) Brain-derived neurotrophic factor enhances periodontal tissue regeneration. Tissue Eng 11(9–10):1618–1629

    Article  CAS  PubMed  Google Scholar 

  128. Li X, Sun DC, Li Y, Wu XY (2018) Neurotrophin-3 improves fracture healing in rats. Eur Rev Med Pharmacol Sci 22(8):2439–2446

    CAS  PubMed  Google Scholar 

  129. Malet M, Brumovsky PR (2015) VGLUTs and glutamate synthesis-focus on DRG neurons and pain. Biomolecules 5(4):3416–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Patton AJ, Genever PG, Birch MA, Suva LJ, Skerry TM (1998) Expression of an N-methyl-D-aspartate-type receptor by human and rat osteoblasts and osteoclasts suggests a novel glutamate signaling pathway in bone. Bone 22(6):645–649

    Article  CAS  PubMed  Google Scholar 

  131. Bozic M, Valdivielso JM (2015) The potential of targeting NMDA receptors outside the CNS. Expert Opin Ther Targets 19(3):399–413

    Article  CAS  PubMed  Google Scholar 

  132. Ho ML, Tsai TN, Chang JK, Shao TS, Jeng YR, Hsu C (2005) Down-regulation of N-methyl D-aspartate receptor in rat-modeled disuse osteopenia. Osteoporos Int 16(12):1780–1788

    Article  CAS  PubMed  Google Scholar 

  133. Parisi E, Bozic M, Ibarz M, Panizo S, Valcheva P, Coll B, Fernández E, Valdivielso JM (2010) Sustained activation of renal N-methyl-D-aspartate receptors decreases vitamin D synthesis: a possible role for glutamate on the onset of secondary HPT. Am J Physiol Endocrinol Metab 299(5):E825–E831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Veldhuis-Vlug AG, Oei L, Souverein PC, Tanck MW, Rivadeneira F, Zillikens MC, Kamphuisen PW, Maitland-van der Zee AH, de Groot MC, Hofman A, Uitterlinden AG, Fliers E, de Boer A, Bisschop PH (2015) Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density. Osteoporos Int 26(7):2019–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kajimura D, Hinoi E, Ferron M, Kode A, Riley KJ, Zhou B, Guo XE, Karsenty G (2011) Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med 208(4):841–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Veldhuis-Vlug AG, Tanck MW, Limonard EJ, Endert E, Heijboer AC, Lips P, Fliers E, Bisschop PH (2015) The effects of beta-2 adrenergic agonist and antagonist on human bone metabolism: a randomized controlled trial. Bone 71:196–200

    Article  CAS  PubMed  Google Scholar 

  137. Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a021873

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hata A, Chen YG (2016) TGF-β Signaling from receptors to smads. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022061

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhang Y, Alexander PB, Wang XF (2017) TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022145

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zhang YE (2018) Mechanistic insight into contextual TGF-β signaling. Curr Opin Cell Biol 51:1–7

    Article  PubMed  Google Scholar 

  141. Derynck R, Budi EH (2019) Specificity, versatility, and control of TGF-β family signaling. Sci Signal. https://doi.org/10.1126/scisignal.aav5183

    Article  PubMed  PubMed Central  Google Scholar 

  142. Alexander KA, Tseng HW, Salga M, Genêt F, Levesque J-P (2020) When the nervous system turns skeletal muscles into bones: how to solve the conundrum of neurogenic heterotopic ossification. Curr Osteoporos Rep 18(6):666–676

    Article  PubMed  Google Scholar 

  143. de Vasconcellos JF, Zicari S, Fernicola SD, Griffin DW, Ji Y, Shin EH, Jones P, Christopherson GT, Bharmal H, Cirino C, Nguyen T, Robertson A, Pellegrini VD, Nesti LJ (2019) In vivo model of human post-traumatic heterotopic ossification demonstrates early fibroproliferative signature. J Transl Med. https://doi.org/10.1186/s12967-019-1996-y

    Article  PubMed  PubMed Central  Google Scholar 

  144. Crane JL, Cao X (2014) Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Investig 124(2):466–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y (2018) TGF-β family signaling in mesenchymal differentiation. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022202

    Article  PubMed  PubMed Central  Google Scholar 

  146. Yu T, Zhang J, Zhu W, Wang X, Bai Y, Feng B, Zhuang Q, Han C, Wang S, Hu Q, An S, Wan M, Dong S, Xu J, Weng X, Cao X (2021) Chondrogenesis mediates progression of ankylosing spondylitis through heterotopic ossification. Bone Res. https://doi.org/10.1038/s41413-021-00140-6

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chen NF, Huang SY, Chen WF, Chen CH, Lu CH, Chen CL, Yang SN, Wang HM, Wen ZH (2013) TGF-β1 attenuates spinal neuroinflammation and the excitatory amino acid system in rats with neuropathic pain. J Pain 14(12):1671–1685

    Article  CAS  PubMed  Google Scholar 

  148. Sulaiman W, Dreesen T, Nguyen D (2018) Single local application of TGF-β promotes a proregenerative state throughout a chronically injured nerve. Neurosurgery 82(6):894–902

    Article  PubMed  Google Scholar 

  149. Meyers EA, Kessler JA (2017) TGF-β family signaling in neural and neuronal differentiation, development, and function. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022244

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hammond TR, Marsh SE, Stevens B (2019) Immune signaling in neurodegeneration. Immunity 50(4):955–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bastien D, Lacroix S (2014) Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve injury. Exp Neurol 258:62–77

    Article  CAS  PubMed  Google Scholar 

  152. Lee JS, Hsu YH, Chiu YS, Jou IM, Chang MS (2020) Anti-IL-20 antibody improved motor function and reduced glial scar formation after traumatic spinal cord injury in rats. J Neuroinflam. https://doi.org/10.1186/s12974-020-01814-4

    Article  Google Scholar 

  153. Patterson ZR, Holahan MR (2012) Understanding the neuroinflammatory response following concussion to develop treatment strategies. Front Cell Neurosci. https://doi.org/10.3389/fncel.2012.00058

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ye Z, Wei J, Zhan C, Hou J (2022) Role of transforming growth factor beta in peripheral nerve regeneration: cellular and molecular mechanisms. Front Neurosci. https://doi.org/10.3389/fnins.2022.917587

    Article  PubMed  PubMed Central  Google Scholar 

  155. Nguyen D, Sulaiman W (2016) Transforming growth factor beta 1, a cytokine with regenerative functions. Neural Regen Res. https://doi.org/10.4103/1673-5374.193223

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sulaiman W, Dreesen TD (2014) Effect of local application of transforming growth factor–β at the nerve repair site following chronic axotomy and denervation on the expression of regeneration-associated genes. J Neurosurg 121(4):859–874

    Article  PubMed  Google Scholar 

  157. Wu J, Lu B, Yang R, Chen Y, Chen X, Li Y (2021) EphB2 knockdown decreases the formation of astroglial-fibrotic scars to promote nerve regeneration after spinal cord injury in rats. CNS Neurosci Ther 27(6):714–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Song S, Wang S, Pigott VM, Jiang T, Foley LM, Mishra A, Nayak R, Zhu W, Begum G, Shi Y, Carney KE, Hitchens TK, Shull GE, Sun D (2018) Selective role of Na+/H+ exchanger in Cx3cr1+ microglial activation, white matter demyelination, and post-stroke function recovery. Glia 66(11):2279–2298

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kisucká A, Bimbová K, Bačová M, Gálik J, Lukáčová N (2021) Activation of neuroprotective microglia and astrocytes at the lesion site and in the adjacent segments is crucial for spontaneous locomotor recovery after spinal cord injury. Cells. https://doi.org/10.3390/cells10081943

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wang W, He D, Chen J, Zhang Z, Wang S, Jiang Y, Wei J (2021) Circular RNA plek promotes fibrogenic activation by regulating the miR-135b-5p/TGF-βR1 axis after spinal cord injury. Aging 13(9):13211–13224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM (2015) TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. https://doi.org/10.1038/boneres.2015.5

    Article  PubMed  PubMed Central  Google Scholar 

  162. Katsuno Y, Derynck R (2021) Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 56(6):726–746

    Article  CAS  PubMed  Google Scholar 

  163. Herpin A, Cunningham C (2007) Cross-talk between the bone morphogenetic protein pathway and other major signaling pathways results in tightly regulated cell-specific outcomes. FEBS J 274(12):2977–2985

    Article  CAS  PubMed  Google Scholar 

  164. Moustakas A, Heldin C-H (2005) Non-Smad TGF-beta signals. J Cell Sci 118(Pt 16):3573–3584

    Article  CAS  PubMed  Google Scholar 

  165. Engin F, Lee B (2010) NOTCHing the bone: insights into multi-functionality. Bone 46(2):274–280

    Article  CAS  PubMed  Google Scholar 

  166. Zhen G, Cao X (2014) Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci 35(5):227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cui Z, Crane J, Xie H, Jin X, Zhen G, Li C, Xie L, Wang L, Bian Q, Qiu T, Wan M, Xie M, Ding S, Yu B, Cao X (2016) Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis 75(9):1714–1721

    Article  CAS  PubMed  Google Scholar 

  168. Mao D, Pan X, Rui Y, Li F (2020) Matrine attenuates heterotopic ossification by suppressing TGF-β induced mesenchymal stromal cell migration and osteogenic differentiation. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2020.110152

    Article  PubMed  Google Scholar 

  169. Huh Y, Ji RR, Chen G (2017) Neuroinflammation, bone marrow stem cells, and chronic pain. Front Immunol. https://doi.org/10.3389/fimmu.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  170. Deng R, Li C, Wang X, Chang L, Ni S, Zhang W, Xue P, Pan D, Wan M, Deng L, Cao X (2021) Periosteal CD68+F4/80+ macrophages are mechanosensitive for cortical bone formation by secretion and activation of TGF-β1. Adv Sci. https://doi.org/10.1002/advs.202103343

    Article  Google Scholar 

  171. Patel NK, Nunez JH, Sorkin M, Marini S, Pagani CA, Strong AL, Hwang CD, Li S, Padmanabhan KR, Kumar R, Bancroft AC, Greenstein JA, Nelson R, Rasheed HA, Livingston N, Vasquez K, Huber AK, Levi B (2022) Macrophage TGF-β signaling is critical for wound healing with heterotopic ossification after trauma. JCI Insight. https://doi.org/10.1172/jci.insight.144925

    Article  PubMed  PubMed Central  Google Scholar 

  172. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X (2013) Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19(6):704–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bailey KN, Nguyen J, Yee CS, Dole NS, Dang A, Alliston T (2021) Mechanosensitive control of articular cartilage and subchondral bone homeostasis in mice requires osteocytic transforming growth factor β signaling. Arthr Rheumatol 73(3):414–425

    Article  CAS  Google Scholar 

  174. Tu B, Li J, Sun Z, Zhang T, Liu H, Yuan F, Fan C (2022) Macrophage-derived TGF-β and VEGF promote the progression of trauma-induced HO. Inflammation 46(1):202–216

    Article  PubMed  Google Scholar 

  175. Liu W, Feng M, Jayasuriya CT, Peng H, Zhang L, Guan Y, Froehlich JA, Terek RM, Chen Q (2020) Human osteoarthritis cartilage-derived stromal cells activate joint degeneration through TGF-beta lateral signaling. FASEB J 34(12):16552–16566

    Article  CAS  PubMed  Google Scholar 

  176. Zhang P, Zhang H, Lin J, Xiao T, Xu R, Fu Y, Zhang Y, Du Y, Cheng J, Jiang H (2020) Insulin impedes osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence via the TGF-β1 pathway. Aging 12(3):2084–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Evangelista AF, Vannier-Santos MA, de Assis Silva GS, Silva DN, Juiz PJL, Nonaka CKV, dos Santos RR, Soares MBP, Villarreal CF (2018) Bone marrow-derived mesenchymal stem/stromal cells reverse the sensorial diabetic neuropathy via modulation of spinal neuroinflammatory cascades. J Neuroinflam. https://doi.org/10.1186/s12974-018-1224-3

    Article  Google Scholar 

  178. Coassin M, Lambiase A, Micera A, Tirassa P, Aloe L, Bonini S (2005) Nerve growth factor modulates in vitro the expression and release of TGF-β1 by amniotic membrane. Graefes Arch Clin Exp Ophthalmol 244(4):485–491

    Article  PubMed  Google Scholar 

  179. Lee HC, Hsu YM, Tsai CC, Ke CJ, Yao CH, Chen YS (2015) Improved peripheral nerve regeneration in streptozotocin-induced diabetic rats by oral lumbrokinase. Am J Chin Med 43(02):215–230

    Article  CAS  PubMed  Google Scholar 

  180. Blaney Davidson EN, van Caam APM, Vitters EL, Bennink MB, Thijssen E, van den Berg WB, Koenders MI, van Lent PLEM, van de Loo FAJ, van der Kraan PM (2015) TGF-β is a potent inducer of nerve growth factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain? Osteoarthr Cartil 23(3):478–486

    Article  CAS  Google Scholar 

  181. Driscoll C, Chanalaris A, Knights C, Ismail H, Sacitharan PK, Gentry C, Bevan S, Vincent TL (2016) Nociceptive sensitizers are regulated in damaged joint tissues including articular cartilage, when osteoarthritic mice display pain behaviour. Arthr Rheumatol 68(4):857–867

    Article  CAS  Google Scholar 

  182. Li S, Gu X, Yi S (2017) The regulatory effects of transforming growth factor-β on nerve regeneration. Cell Transplant 26(3):381–394

    Article  PubMed  PubMed Central  Google Scholar 

  183. Yokozeki Y, Uchida K, Kawakubo A, Nakawaki M, Okubo T, Miyagi M, Inoue G, Itakura M, Sekiguchi H, Takaso M (2021) TGF-β regulates nerve growth factor expression in a mouse intervertebral disc injury model. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-021-04509-w

    Article  PubMed  PubMed Central  Google Scholar 

  184. Scherer SS, Kamholz J, Jakowlew SB (1993) Axons modulate the expression of transforming growth factor-betas in Schwann cells. Glia 8(4):265–276

    Article  CAS  PubMed  Google Scholar 

  185. Chalazonitis A, Kalberg J, Twardzik DR, Morrison RS, Kessler JA (1992) Transforming growth factor beta has neurotrophic actions on sensory neurons in vitro and is synergistic with nerve growth factor. Dev Biol 152(1):121–132

    Article  CAS  PubMed  Google Scholar 

  186. Tower RJ, Li Z, Cheng YH, Wang XW, Rajbhandari L, Zhang Q, Negri S, Uytingco CR, Venkatesan A, Zhou FQ, Cahan P, James AW, Clemens TL (2021) Spatial transcriptomics reveals a role for sensory nerves in preserving cranial suture patency through modulation of BMP/TGF-β signaling. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2103087118

    Article  PubMed  PubMed Central  Google Scholar 

  187. Bouchet C, Cardouat G, Douard M, Coste F, Robillard P, Delcambre F, Ducret T, Quignard JF, Vacher P, Baudrimont I, Marthan R, Berger P, Guibert C, Freund-Michel V (2022) Inflammation and oxidative stress induce NGF secretion by pulmonary arterial cells through a TGF-β1-dependent mechanism. Cells. https://doi.org/10.3390/cells11182795

    Article  PubMed  PubMed Central  Google Scholar 

  188. Li Z, Meyers CA, Chang L, Lee S, Li Z, Tomlinson R, Hoke A, Clemens TL, James AW (2019) Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest 129(12):5137–5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A, Kamo M, Joh S, Satoh K, Ishisaki A (2018) IL-1β and TNF-α suppress TGF-β-promoted NGF expression in periodontal ligament-derived fibroblasts through inactivation of TGF-β-induced Smad2/3- and p38 MAPK-mediated signals. Int J Mol Med 42(3):1484–1494

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Haas SL, Fitzner B, Jaster R, Wiercinska E, Gaitantzi H, Jesnowski R, Lohr JM, Singer MV, Dooley S, Breitkopf K (2009) Transforming growth factor-beta induces nerve growth factor expression in pancreatic stellate cells by activation of the ALK-5 pathway. Growth Factors 27(5):289–299

    Article  CAS  PubMed  Google Scholar 

  191. Villapol S, Wang Y, Adams M, Symes AJ (2013) Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Exp Neurol 250:353–365

    Article  CAS  PubMed  Google Scholar 

  192. Vizza D, Perri A, Toteda G, Lupinacci S, Leone F, Gigliotti P, Lofaro D, La Russa A, Bonofiglio R (2015) Nerve growth factor exposure promotes tubular epithelial–mesenchymal transitionviaTGF-β1 signaling activation. Growth Factors 33(3):169–180

    Article  CAS  PubMed  Google Scholar 

  193. Yin J, Chang HM, Yi Y, Yao Y, Leung PCK (2020) TGF-β1 increases GDNF production by upregulating the expression of GDNF and furin in human granulosa-lutein cells. Cells. https://doi.org/10.3390/cells9010185

    Article  PubMed  PubMed Central  Google Scholar 

  194. Harvey BK, Hoffer BJ, Wang Y (2005) Stroke and TGF-β proteins: glial cell line-derived neurotrophic factor and bone morphogenetic protein. Pharmacol Ther 105(2):113–125

    Article  CAS  PubMed  Google Scholar 

  195. Shen WX, Chen JH, Lu JH, Peng YP, Qiu YH (2014) TGF-β1 protection against Aβ1–42-induced neuroinflammation and neurodegeneration in rats. Int J Mol Sci 15(12):22092–22108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K (2002) TGF-beta and the regulation of neuron survival and death. J Physiol Paris 96(1–2):25–30

    Article  CAS  PubMed  Google Scholar 

  197. Naik AS, Lin JM, Taroc EZM, Katreddi RR, Frias JA, Lemus AA, Sammons MA, Forni PE (2020) Smad4-dependent morphogenic signals control the maturation and axonal targeting of basal vomeronasal sensory neurons to the accessory olfactory bulb. Development. https://doi.org/10.1242/dev.184036

    Article  PubMed  PubMed Central  Google Scholar 

  198. Yu AL, Fuchshofer R, Birke M, Priglinger SG, Eibl KH, Kampik A, Bloemendal H, Welge-Lussen U (2007) Hypoxia/reoxygenation and TGF-β increase αB-crystallin expression in human optic nerve head astrocytes. Exp Eye Res 84(4):694–706

    Article  CAS  PubMed  Google Scholar 

  199. Wu Q, Miao X, Zhang J, Xiang L, Li X, Bao X, Du S, Wang M, Miao S, Fan Y, Wang W, Xu X, Shen X, Yang D, Wang X, Fang Y, Hu L, Pan X, Dong H, Wang H, Wang Y, Li J, Huang Z (2021) Astrocytic YAP protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model through TGF-β signaling. Theranostics 11(17):8480–8499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cekanaviciute E, Dietrich HK, Axtell RC, Williams AM, Egusquiza R, Wai KM, Koshy AA, Buckwalter MS (2014) Astrocytic TGF-β signaling limits inflammation and reduces neuronal damage during central nervous system toxoplasma infection. J Immunol 193(1):139–149

    Article  CAS  PubMed  Google Scholar 

  201. Gugala Z, Olmsted-Davis EA, Xiong Y, Davis EL, Davis AR (2018) Trauma-induced heterotopic ossification regulates the blood-nerve barrier. Front Neurol 9:408

    Article  PubMed  PubMed Central  Google Scholar 

  202. Ding W, Cai C, Zhu X, Wang J, Jiang Q (2022) Parthenolide ameliorates neurological deficits and neuroinflammation in mice with traumatic brain injury by suppressing STAT3/NF-kappaB and inflammasome activation. Int Immunopharmacol 108:108913

    Article  CAS  PubMed  Google Scholar 

  203. Sun X, Li X, Zhou Y, Wang Y, Liu X (2022) Exogenous TIPE2 inhibit TAK1 to improve inflammation and neuropathic pain induced by sciatic nerve injury through inactivating NF-kappaB and JNK. Neurochem Res 47(10):3167–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Genêt F, Kulina I, Vaquette C, Torossian F, Millard S, Pettit AR, Sims NA, Anginot A, Guerton B, Winkler IG, Barbier V, Lataillade JJ, Le Bousse-Kerdilès MC, Hutmacher DW, Levesque JP (2015) Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle. J Pathol 236(2):229–240

    Article  PubMed  Google Scholar 

  205. Brady RD, Shultz SR, McDonald SJ, O’Brien TJ (2018) Neurological heterotopic ossification: current understanding and future directions. Bone 109:35–42

    Article  PubMed  Google Scholar 

  206. Huang Y, Wang X, Zhou D, Zhou W, Dai F, Lin H (2021) Macrophages in heterotopic ossification: from mechanisms to therapy. Npj Regen Med. https://doi.org/10.1038/s41536-021-00178-4

    Article  PubMed  PubMed Central  Google Scholar 

  207. Tirone M, Giovenzana A, Vallone A, Zordan P, Sormani M, Nicolosi PA, Meneveri R, Gigliotti CR, Spinelli AE, Bocciardi R, Ravazzolo R, Cifola I, Brunelli S (2019) Severe heterotopic ossification in the skeletal muscle and endothelial cells recruitment to chondrogenesis are enhanced by monocyte/macrophage depletion. Front Immunol. https://doi.org/10.3389/fimmu.2019.01640

    Article  PubMed  PubMed Central  Google Scholar 

  208. Sorkin M, Huber AK, Hwang C, Carson WF, Menon R, Li J, Vasquez K, Pagani C, Patel N, Li S, Visser ND, Niknafs Y, Loder S, Scola M, Nycz D, Gallagher K, McCauley LK, Xu J, James AW, Agarwal S, Kunkel S, Mishina Y, Levi B (2020) Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nat Commun. https://doi.org/10.1038/s41467-019-14172-4

    Article  PubMed  PubMed Central  Google Scholar 

  209. Cutolo M, Campitiello R, Gotelli E, Soldano S (2022) The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Front Immunol. https://doi.org/10.3389/fimmu.2022.867260

    Article  PubMed  PubMed Central  Google Scholar 

  210. Torossian F, Guerton B, Anginot A, Alexander KA, Desterke C, Soave S, Tseng HW, Arouche N, Boutin L, Kulina I, Salga M, Jose B, Pettit AR, Clay D, Rochet N, Vlachos E, Genet G, Debaud C, Denormandie P, Genet F, Sims NA, Banzet S, Levesque JP, Lataillade JJ, Le Bousse-Kerdilès M-C (2017) Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight. https://doi.org/10.1172/jci.insight.96034

    Article  PubMed  PubMed Central  Google Scholar 

  211. Wang L, Zhao R, Shi X, Wei T, Halloran BP, Clark DJ, Jacobs CR, Kingery WS (2009) Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone 45(2):309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Xie K, Chen L, Yang J (2021) RNA sequencing evidences the prevention of oxidative stress is effective in injury-induced heterotopic ossification treatment. J Biomed Nanotechnol 17(2):196–204

    Article  CAS  PubMed  Google Scholar 

  213. Stegen S, Laperre K, Eelen G, Rinaldi G, Fraisl P, Torrekens S, Van Looveren R, Loopmans S, Bultynck G, Vinckier S, Meersman F, Maxwell PH, Rai J, Weis M, Eyre DR, Ghesquière B, Fendt SM, Carmeliet P, Carmeliet G (2019) HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature 565(7740):511–515

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  214. Fang CN, Tan HQ, Song AB, Jiang N, Liu QR, Song T (2022) NGF/TrkA promotes the vitality, migration and adhesion of bone marrow stromal cells in hypoxia by regulating the Nrf2 pathway. Metab Brain Dis 37(6):2017–2026

    Article  CAS  PubMed  Google Scholar 

  215. Li Z, Wu F, Xu D, Zhi Z, Xu G (2019) Inhibition of TREM1 reduces inflammation and oxidative stress after spinal cord injury (SCI) associated with HO-1 expressions. Biomed Pharmacother 109:2014–2021

    Article  CAS  PubMed  Google Scholar 

  216. Zheng G, Peng X, Zhang Y, Wang P, Xie Z, Li J, Liu W, Ye G, Lin Y, Li G, Liu H, Zeng C, Li L, Wu Y, Shen H (2023) A novel Anti-ROS osteoblast-specific delivery system for ankylosing spondylitis treatment via suppression of both inflammation and pathological new bone formation. J Nanobiotechnol 21(1):168

    Article  CAS  Google Scholar 

  217. Li G, Deng Y, Li K, Liu Y, Wang L, Wu Z, Chen C, Zhang K, Yu B (2022) Hedgehog signalling contributes to trauma-induced tendon heterotopic ossification and regulates osteogenesis through antioxidant pathway in tendon-derived stem cells. Antioxidants (Basel) 11(11):2265

    Article  CAS  PubMed  Google Scholar 

  218. Yang J, Zhang X, Lu B, Mei J, Xu L, Zhang X, Su Z, Xu W, Fang S, Zhu C, Xu D, Zhu W (2023) Inflammation-responsive hydrogel spray for synergistic prevention of traumatic heterotopic ossification via dual-homeostatic modulation strategy. Adv Sci (Weinh). https://doi.org/10.1002/advs.202302905

    Article  PubMed  PubMed Central  Google Scholar 

  219. Wang H, Lindborg C, Lounev V, Kim JH, McCarrick-Walmsley R, Xu M, Mangiavini L, Groppe JC, Shore EM, Schipani E, Kaplan FS, Pignolo RJ (2016) Cellular hypoxia promotes heterotopic ossification by amplifying BMP signaling. J Bone Miner Res 31(9):1652–1665

    Article  CAS  PubMed  Google Scholar 

  220. Agarwal S, Loder S, Brownley C, Cholok D, Mangiavini L, Li J, Breuler C, Sung HH, Li S, Ranganathan K, Peterson J, Tompkins R, Herndon D, Xiao W, Jumlongras D, Olsen BR, Davis TA, Mishina Y, Schipani E, Levi B (2015) Inhibition of Hif1α prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1515397113

    Article  PubMed  PubMed Central  Google Scholar 

  221. Sang X, Wang Z, Shi P, Li Y, Cheng L (2019) CGRP accelerates the pathogenesis of neurological heterotopic ossification following spinal cord injury. Artif Cells Nanomed Biotechnol 47(1):2569–2574

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Draft of Fig. 1 was created with BioRender.com.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 82102600 and 82272485).

Author information

Authors and Affiliations

Authors

Contributions

DL mainly contributed to the topic determination, literature selection, and draft written, CL, HW, YL and YW screened detailed information from the literature and helped in the manuscript discussion. SS and SA approved the direction of the topic, revised the manuscript, and supervised the work.

Corresponding authors

Correspondence to Senbo An or Shui Sun.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Liu, C., Wang, H. et al. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res (2024). https://doi.org/10.1007/s11064-024-04118-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11064-024-04118-8

Keywords

Navigation