Skip to main content

Advertisement

Log in

Intranasal Rotenone Induces Alpha-Synuclein Accumulation, Neuroinflammation and Dopaminergic Neurodegeneration in Middle-Aged Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Accumulation of alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson’s disease (PD). Previous studies suggest that α-syn pathology may originate from the olfactory bulb (OB) or gut in response to an unknown pathogen and later progress to the different brain regions. Aging is viewed as the utmost threat to PD development. Therefore, studies depicting the role of age in α-syn accumulation and its progression in PD are important. In the present study, we gave intranasal rotenone microemulsion for 6 weeks in 12-month-old female BALB/c mice and found olfactory dysfunction after 4 and 6 weeks of rotenone administration. Interestingly, motor impairment was observed only after 6 weeks. The animals were sacrificed after 6 weeks to perform western blotting and immunohistochemical studies to detect α-syn pathology, neuroinflammation and neurodegeneration. We found α-syn accumulation in OB, striatum, substantia nigra (SN) and cortex. Importantly, we found significant glial cell activation and neurodegeneration in all the analysed regions which were absent in our previous published studies with 3 months old mice even after they were exposed to rotenone for 9 weeks indicating age is a crucial factor for α-syn induced neuroinflammation and neurodegeneration. We also observed increased iron accumulation in SN of rotenone-exposed aged mice. Moreover, inflammaging was observed in OB and striatum of 12-month-old BALB/c mice as compared to 3-month-old BALB/c mice. In conclusion, there is a difference in sensitivity between adult and aged mice in the development and progression of α-syn pathology and subsequent neurodegeneration, for which inflammaging might be the crucial probable mechanism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

Abbreviations

α-syn:

Alpha-synuclein

BCA:

Bicinchoninic acid

CPCSEA:

Committee for the Purpose of Control and Supervision of Experiments on animals

DAB:

3,3′-Diaminobenzidine

DA:

Dopamine

DAergic:

Dopaminergic

DPX:

Dibutylphthalate Polystyrene Xylene

CNS:

Central nervous system

GFAP:

Glial fibrillary acidic protein

IAEC:

Institutional animal ethics committee

Iba-1:

Ionized calcium binding adaptor molecule 1

IHC:

Immunohistochemistry

i.n:

Intranasal

mAb:

Monoclonal antibody

ME:

Microemulsion

NFkB:

Nuclear Factor Kappa B

OB:

Olfactory bulb

pAb:

Polyclonal antibody

PBS:

Phosphate buffer saline

PD:

Parkinson’s disease

PFA:

Paraformaldehyde

PMSF:

Phenylmethyl sulfonyl fluoride

pTH:

Phosphorylated tyrosine hydroxylase

psyn:

Phosphorylated alpha-synuclein

PVDF:

Polyvinylidene fluoride

RIPA buffer:

Radioimmunoprecipitation assay buffer

RBWT:

Round beam walk test

SDS:

Sodium dodecyl sulphate

SLS:

Sodium lauryl sulphate

SN:

Substantia nigra

SNc:

Substantia nigra pars compacta

TEMED:

Tetramethyl-ethylenediamine

TH:

Tyrosine hydroxylase

References

  1. De Rijk M, Breteler M, Graveland G, Ott A, Grobbee D, Van der Meche F, Hofman A (1995) Prevalence of parkinson’s disease in the elderly: the rotterdam study. Neurology 45:2143–2146

    Article  PubMed  Google Scholar 

  2. Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R (2020) Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol 11:356

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee H-J, Suk J-E, Lee K-W, Park S-H, Blumbergs PC, Gai W-P, Lee S-J (2011) Transmission of synucleinopathies in the enteric nervous system of A53T alpha-synuclein transgenic mice. Exp Neurobiol 20:181

    Article  PubMed  PubMed Central  Google Scholar 

  4. Malek N, Swallow D, Grosset K, Anichtchik O, Spillantini M, Grosset D (2014) Alpha-synuclein in peripheral tissues and body fluids as a biomarker for P arkinson’s disease–a systematic review. Acta Neurol Scand 130:59–72

    Article  CAS  PubMed  Google Scholar 

  5. Uemura N, Yagi H, Uemura MT, Hatanaka Y, Yamakado H, Takahashi R (2018) Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol Neurodegener 13:1–11

    Article  Google Scholar 

  6. Sui X, Zhou C, Li J, Chen L, Yang X, Li F (2019) Hyposmia as a predictive marker of Parkinson’s disease: a systematic review and meta-analysis. BioMed Res Int 2019:1–9

    Google Scholar 

  7. Yu Q-J, Yu S-Y, Zuo L-J, Lian T-H, Hu Y, Wang R-D, Piao Y-S, Guo P, Liu L, Jin Z (2018) Parkinson disease with constipation: clinical features and relevant factors. Sci Rep 8:1–9

    Google Scholar 

  8. Roos DS, Twisk JW, Raijmakers PG, Doty RL, Berendse HW (2019) Hyposmia as a marker of (non-) motor disease severity in Parkinson’s disease. J Neural Transm 126:1471–1478

    Article  CAS  PubMed  Google Scholar 

  9. Braak H, Del Tredici K, Rüb U, De Vos RA, Steur ENJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  10. Braak H, Del Tredici K (2017) Neuropathological staging of brain pathology in sporadic Parkinson’s disease: separating the wheat from the chaff. J Parkinsons Dis 7:S71–S85

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen H, Wang K, Scheperjans F, Killinger B (2022) Environmental triggers of Parkinson’s disease–implications of the braak and dual-hit hypotheses. Neurobiol Dis 163:105601

    Article  CAS  PubMed  Google Scholar 

  12. Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 33:599–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rey NL, Petit GH, Bousset L, Melki R, Brundin P (2013) Transfer of human α-synuclein from the olfactory bulb to interconnected brain regions in mice. Acta Neuropathol 126:555–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rey NL, Steiner JA, Maroof N, Luk KC, Madaj Z, Trojanowski JQ, Lee VM-Y, Brundin P (2016) Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J Exp Med 213:1759–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rey NL, Wesson DW, Brundin P (2018) The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis 109:226–248

    Article  CAS  PubMed  Google Scholar 

  16. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14:19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buchman AS, Shulman JM, Nag S, Leurgans SE, Arnold SE, Morris MC, Schneider JA, Bennett DA (2012) Nigral pathology and parkinsonian signs in elders without Parkinson disease. Ann Neurol 71:258–266

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mattson MP, Arumugam TV (2018) Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab 27:1176–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vila M (2019) Neuromelanin, aging, and neuronal vulnerability in Parkinson’s disease. Mov Disord 34:1440–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E (2012) MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage 59:2625–2635

    Article  CAS  PubMed  Google Scholar 

  21. Dexter D, Wells F, Lee A, Agid F, Agid Y, Jenner P, Marsden C (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  CAS  PubMed  Google Scholar 

  22. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. The Lancet Neurology 13:1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kosta P, Argyropoulou MI, Markoula S, Konitsiotis S (2006) MRI evaluation of the basal ganglia size and iron content in patients with Parkinson’s disease. J Neurol 253:26–32

    Article  PubMed  Google Scholar 

  24. Rossi ME, Ruottinen H, Saunamäki T, Elovaara I, Dastidar P (2014) Imaging brain iron and diffusion patterns: a follow-up study of Parkinson’s disease in the initial stages. Acad Radiol 21:64–71

    Article  PubMed  Google Scholar 

  25. Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26:578–580

    Article  CAS  PubMed  Google Scholar 

  26. Zecca L, Gallorini M, Schünemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D (2001) Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 76:1766–1773

    Article  CAS  PubMed  Google Scholar 

  27. He L-q, Lu J-h, Yue Z-y (2013) Autophagy in ageing and ageing-associated diseases. Acta Pharmacol Sin 34:605–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009357

    Article  PubMed  PubMed Central  Google Scholar 

  29. Parekh P, Sharma N, Gadepalli A, Shahane A, Sharma M, Khairnar A (2019) A cleaning crew: the pursuit of autophagy in Parkinson’s disease. ACS Chem Neurosci 10:3914–3926

    Article  CAS  PubMed  Google Scholar 

  30. Calabrese V, Santoro A, Monti D, Crupi R, Di Paola R, Latteri S, Cuzzocrea S, Zappia M, Giordano J, Calabrese EJ (2018) Aging and Parkinson’s disease: inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radical Biol Med 115:80–91

    Article  CAS  Google Scholar 

  31. Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM (2014) Inflammation in neurodegenerative diseases–an update. Immunology 142:151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783

    Article  CAS  PubMed  Google Scholar 

  33. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Ahn Y-H, Benjamin IJ, Honda T, Hicks RJ, Calabrese V, Cole PA, Dinkova-Kostova AT (2011) HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway. Chem Biol 18:1355–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Calabrese EJ, Iavicoli I, Calabrese V (2012) Hormesis: why it is important to biogerontologists. Biogerontology 13:215–235

    Article  PubMed  Google Scholar 

  36. Salvioli S, Capri M, Valensin S, Tieri P, Monti D, Ottaviani E, Franceschi C (2006) Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Curr Pharm Des 12:3161–3171

    Article  CAS  PubMed  Google Scholar 

  37. Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, de Bernard M (2013) Triggering of inflammasome by aggregated α–synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8:e55375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu M, Sun X-L, Qiao C, Liu Y, Ding J-H, Hu G (2014) Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol Aging 35:421–430

    Article  CAS  PubMed  Google Scholar 

  39. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:62–73

    Article  CAS  PubMed  Google Scholar 

  40. Mao Z, Liu C, Ji S, Yang Q, Ye H, Han H, Xue Z (2017) The NLRP3 inflammasome is involved in the pathogenesis of Parkinson’s disease in rats. Neurochem Res 42:1104–1115

    Article  CAS  PubMed  Google Scholar 

  41. Sharma M, Kaur J, Rakshe S, Sharma N, Khunt D, Khairnar A (2022) Intranasal exposure to low-dose rotenone induced alpha-synuclein accumulation and parkinson’s like symptoms without loss of dopaminergic neurons. Neurotox Res 40:215–229

    Article  CAS  PubMed  Google Scholar 

  42. Sasajima H, Miyazono S, Noguchi T, Kashiwayanagi M (2017) Intranasal administration of rotenone to mice induces dopaminergic neurite degeneration of dopaminergic neurons in the substantia nigra. Biol Pharm Bull 40:108–112

    Article  CAS  PubMed  Google Scholar 

  43. Rabl R, Breitschaedel C, Flunkert S, Duller S, Amschl D, Neddens J, Niederkofler V, Rockenstein E, Masliah E, Roemer H (2017) Early start of progressive motor deficits in Line 61 α-synuclein transgenic mice. BMC Neurosci 18:1–12

    Article  Google Scholar 

  44. Mamiya T, Ukai M (2001) [Gly14]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br J Pharmacol 134:1597–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parkhe A, Parekh P, Nalla LV, Sharma N, Sharma M, Gadepalli A, Kate A, Khairnar A (2020) Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson’s disease. Neurosci Lett 716:134652

    Article  CAS  PubMed  Google Scholar 

  46. Khairnar A, Plumitallo A, Frau L, Schintu N, Morelli M (2010) Caffeine enhances astroglia and microglia reactivity induced by 3, 4-methylenedioxymethamphetamine (‘ecstasy’) in mouse brain. Neurotox Res 17:435–439

    Article  CAS  PubMed  Google Scholar 

  47. Ip CW, Cheong D, Volkmann J (2017) Stereological estimation of dopaminergic neuron number in the mouse substantia nigra using the optical fractionator and standard microscopy equipment. JoVE J Vis Exp 127:e56103

    Google Scholar 

  48. Farrand AQ, Verner RS, McGuire RM, Helke KL, Hinson VK, Boger HA (2020) Differential effects of vagus nerve stimulation paradigms guide clinical development for Parkinson’s disease. Brain Stimul 13:1323–1332

    Article  PubMed  Google Scholar 

  49. Guo J-J, Yue F, Song D-Y, Bousset L, Liang X, Tang J, Yuan L, Li W, Melki R, Tang Y (2021) Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis. Cell Death Dis 12:1–14

    Article  Google Scholar 

  50. Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 4:1–9

    Article  Google Scholar 

  51. Park T, Chen H, Kevala K, Lee J-W, Kim H-Y (2016) N-Docosahexaenoylethanolamine ameliorates LPS-induced neuroinflammation via cAMP/PKA-dependent signaling. J Neuroinflammation 13:1–15

    Article  Google Scholar 

  52. Tabrez S, Jabir NR, Shakil S, Greig NH, Alam Q, Abuzenadah AM, Damanhouri GA, Kamal MA (2012) A synopsis on the role of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol Disord-Drug Targets Former Curr Drug Targets-CNS Neurol Disord 11:395–409

    CAS  Google Scholar 

  53. Dunkley PR, Bobrovskaya L, Graham ME, Von Nagy-Felsobuki EI, Dickson PW (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91:1025–1043

    Article  CAS  PubMed  Google Scholar 

  54. Driver-Dunckley E, Adler CH, Hentz JG, Dugger BN, Shill HA, Caviness JN, Sabbagh MN, Beach TG, Consortium APD (2014) Olfactory dysfunction in incidental Lewy body disease and Parkinson’s disease. Parkinsonism Relat Disord 20:1260–1262

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rey NL, George S, Steiner JA, Madaj Z, Luk KC, Trojanowski JQ, Lee VM-Y, Brundin P (2018) Spread of aggregates after olfactory bulb injection of α-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathol 135:65–83

    Article  CAS  PubMed  Google Scholar 

  56. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sala G, Arosio A, Stefanoni G, Melchionda L, Riva C, Marinig D, Brighina L, Ferrarese C (2013) Rotenone upregulates alpha-synuclein and myocyte enhancer factor 2D independently from lysosomal degradation inhibition. BioMed Res Int 2013:1–10

    Article  Google Scholar 

  58. Niu H, Wang Q, Zhao W, Liu J, Wang D, Muhammad B, Liu X, Quan N, Zhang H, Zhang F (2020) IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-Synuclein pathology in the olfactory bulb, substantia nigra and striatum. Brain Pathol 30:1102–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Van Den Berge N, Ferreira N, Mikkelsen TW, Alstrup AKO, Tamgüney G, Karlsson P, Terkelsen AJ, Nyengaard JR, Jensen PH, Borghammer P (2021) Ageing promotes pathological alpha-synuclein propagation and autonomic dysfunction in wild-type rats. Brain 144:1853–1868

    Article  PubMed  Google Scholar 

  60. Tai H-C, Schuman EM (2008) Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 9:826–838

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y, Zhang Y, Zhu K, Chi S, Wang C, Xie A (2020) Emerging role of Sirtuin 2 in Parkinson’s disease. Front Aging Neurosci 11:372

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hindle JV (2010) Ageing, neurodegeneration and Parkinson’s disease. Age Ageing 39:156–161

    Article  PubMed  Google Scholar 

  63. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V (2022) Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 22:657–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 23:474–483

    Article  Google Scholar 

  65. Godbout J, Chen J, Abraham J, Richwine A, Berg B, Kelley K, Johnson R (2005) Exaggerated neuroinflammation and sickness behavior in aged mice after activation of the peripheral innate immune system. FASEB J 19:1329–1331

    Article  CAS  PubMed  Google Scholar 

  66. Sparkman NL, Johnson RW (2008) Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. NeuroImmunoModulation 15:323–330

    Article  CAS  PubMed  Google Scholar 

  67. Norden DM, Godbout J (2013) Microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 39:19–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gritsenko A, Green JP, Brough D, Lopez-Castejon G (2020) Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine Growth Factor Rev 55:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Drake J, Sultana R, Aksenova M, Calabrese V, Butterfield DA (2003) Elevation of mitochondrial glutathione by γ-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J Neurosci Res 74:917–927

    Article  CAS  PubMed  Google Scholar 

  70. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Giuffrida Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    Article  CAS  PubMed  Google Scholar 

  71. Griffiths P, Dobson B, Jones G, Clarke D (1999) Iron in the basal ganglia in Parkinson’s disease: an in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain 122:667–673

    Article  PubMed  Google Scholar 

  72. Dexter D, Wells F, Agid F, Agid Y, Lees A, Jenner P, Marsden C (1987) Increased nigral iron content in postmortem parkinsonian brain. The Lancet 330:1219–1220

    Article  Google Scholar 

  73. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds G, Hebenstreit G, Youdim M (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    Article  CAS  PubMed  Google Scholar 

  74. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    Article  CAS  PubMed  Google Scholar 

  75. Dexter D, Carayon A, Javoy-Agid F, Agid Y, Wells F, Daniel S, Lees A, Jenner P, Marsden C (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975

    Article  PubMed  Google Scholar 

  76. Chen B, Wen X, Jiang H, Wang J, Song N, Xie J (2019) Interactions between iron and α-synuclein pathology in Parkinson’s disease. Free Radical Biol Med 141:253–260

    Article  CAS  Google Scholar 

  77. Ortega R, Carmona A, Roudeau S, Perrin L, Dučić T, Carboni E, Bohic S, Cloetens P, Lingor P (2016) α-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons. Mol Neurobiol 53:1925–1934

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad administration for providing the facility and support for conducting this study. They are supported by project no. LX22NPO5107 (MEYS): financed by European Union – Next Generation EU.

Funding

This supplement was supported by the National Institute of Pharmaceutical Education and Research (NIPER) seed fund-Ahmedabad, Department of Pharmaceutics, Ministry of Chemicals and Fertilizers, Government of India. Dr. Amit Khairnar gratefully acknowledges the support of the Ramalingaswami Fellowship (No. BT/RLF/Re-entry/24/2017) from the Department of Biotechnology, India.

Author information

Authors and Affiliations

Authors

Contributions

Conception and study design was done by AK and MS. Data acquisition was done by MS and NS. Data was analysed by MS and NS. Manuscript was written by MS and revised by AK, MS and NS.

Corresponding author

Correspondence to Amit Khairnar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

No clinical study was conducted. Experimental design for pre-clinical study was approved by IAEC Committee of NIPER Ahmedabad (IAEC approval number: NIPERA/IAEC/2019/19). All efforts were made to minimize animal suffering and to reduce the number of animals used.

Consent to Participate

Not applicable.

Consent to Publish

All the authors have given their consent to publish this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Sharma, N. & Khairnar, A. Intranasal Rotenone Induces Alpha-Synuclein Accumulation, Neuroinflammation and Dopaminergic Neurodegeneration in Middle-Aged Mice. Neurochem Res 48, 1543–1560 (2023). https://doi.org/10.1007/s11064-022-03847-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03847-y

Keywords

Navigation