Skip to main content

Advertisement

Log in

Efforts Towards Repurposing of Antioxidant Drugs and Active Compounds for Multiple Sclerosis Control

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Multiple Sclerosis (MS) is a degenerative disorder of the central nervous system (CNS) with complicated etiology that has not been clearly analyzed until nowadays. Apart from anti-inflammatory, immune modulatory and symptomatic treatments, which are the main tools towards MS control, antioxidant molecules may be of interest. Oxidative stress is a key condition implicated in the disease progression. Reactive species production is associated with immune cell activation in the brain as well as in the periphery, accounting for demyelinating and axonal disruptive processes. This review refers to research articles, of the last decade. It describes biological evaluation of antioxidant drugs, and molecules with pharmaceutical interest, which are not designed for MS treatment, however they seem to have potency against MS. Their antioxidant effect is accompanied, in most of the cases, by anti-inflammatory, immune-modulatory and neuroprotective properties. Compounds with such characteristics are expected to be beneficial in the treatment of MS, alone or as complementary therapy, improving some clinical and mechanistic aspects of the disease. This review also summarizes some of the pathobiological characteristics of MS, as well as the role of oxidative stress and inflammation in the progression of neurodegeneration. It presents known drugs and bioactive compounds with antioxidant, and in many cases, pleiotropic activity that have been tested for their efficacy in MS progression or the experimentally induced MS. Antioxidants may offer reduction or prevention of the disease symptoms and progression. Thus, their results may, combined with already applied treatments, be beneficial for the development of new molecules or the repurposing of drugs and supplements that are used with other indication so far.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Compston A, Coles A (2008) Multiple sclerosis. The Lancet 372:1502–1517. https://doi.org/10.1016/S0140-6736(08)61620-7

    Article  CAS  Google Scholar 

  2. Pegoretti V, Swanson KA, Bethea JR, Probert L, Eisel ULM, Fischer R (2020) Inflammation and oxidative stress in multiple sclerosis: consequences for therapy development. Oxid Med Cell Longev 2020:7191080. https://doi.org/10.1155/2020/7191080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henderson AP, Barnett MH, Parratt JD, Prineas JW (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66:739–753. https://doi.org/10.1002/ana.21800

    Article  PubMed  Google Scholar 

  4. Lassmann H (2018) Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol 9:3116. https://doi.org/10.3389/fimmu.2018.03116

    Article  CAS  PubMed  Google Scholar 

  5. Giovannoni G, Tomic D, Bright JR, Havrdová E (2017) “No evident disease activity”: The use of combined assessments in the management of patients with multiple sclerosis. Mult Scler 23:1179–1187. https://doi.org/10.1177/1352458517703193

    Article  PubMed  PubMed Central  Google Scholar 

  6. Khan N, Smith MT (2014) Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology 22:1–22. https://doi.org/10.1007/s10787-013-0195-3

    Article  CAS  PubMed  Google Scholar 

  7. Kappos L, Wolinsky JS, Giovannoni G, Arnold DL, Wang Q, Bernasconi C et al (2020) Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol 77:1132–1140. https://doi.org/10.1001/jamaneurol.2020.1568

    Article  PubMed  Google Scholar 

  8. Lin CC, Edelson BT (2015) New insights into the role of IL-1β in experimental autoimmune encephalomyelitis and multiple sclerosis. J Immunol 198:4553–4560. https://doi.org/10.4049/jimmunol.1700263

    Article  CAS  Google Scholar 

  9. Probert L (2015) TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience 302:2–22. https://doi.org/10.1016/j.neuroscience.2015.06.038

    Article  CAS  PubMed  Google Scholar 

  10. Fischer R, Sendetski M, Del Rivero T, Martinez GF, Bracchi-Ricard V, Swanson KA et al (2019) TNFR2 promotes treg-mediated recovery from neuropathic pain across sexes. Proc Natl Acad Sci U S A 116:17045–17050. https://doi.org/10.1073/pnas.1902091116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neumann B, Segel M, Chalut KJ, Franklin RJ (2019) Remyelination and ageing: reversing the ravages of time. Mult Scler 25:1835–1841. https://doi.org/10.1177/1352458519884006

    Article  PubMed  PubMed Central  Google Scholar 

  12. Heß K, Starost L, Kieran NW, Thomas C, Vincenten MCJ, Antel J et al (2020) Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol 140:359–375. https://doi.org/10.1007/s00401-020-02189-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354. https://doi.org/10.1152/physrev.00040.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ursini F, Maiorino M, Forman HJ (2016) Redox homeostasis: the golden mean of healthy living. Redox Biol 8:205–215. https://doi.org/10.1016/j.redox.2016.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180. https://doi.org/10.1007/s00204-013-1034-4

    Article  CAS  PubMed  Google Scholar 

  16. Cheng Y, Gulbins E, Siemen D (2011) Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel. Cell Physiol Biochem 27:191–200. https://doi.org/10.1159/000327944

    Article  CAS  PubMed  Google Scholar 

  17. Adamczyk-Sowa M, Galiniak S, Żyracka E, Grzesik M, Naparło K, Sowa P et al (2017) Oxidative modification of blood serum proteins in multiple sclerosis after interferon beta and melatonin treatment. Oxid Med Cell Longev 2017:7905148. https://doi.org/10.1155/2017/7905148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haider L (2015) Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis. Oxid Med Cell Longev 2015:725370. https://doi.org/10.1155/2015/725370

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nikić I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM et al (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17:495–499. https://doi.org/10.1038/nm.2324

    Article  CAS  PubMed  Google Scholar 

  20. Mossakowski AA, Pohlan J, Bremer D, Lindquist R, Millward JM, Bock M et al (2015) Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation. Acta Neuropathol 130:799–814. https://doi.org/10.1007/s00401-015-1497-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201. https://doi.org/10.1038/nrneurol.2010.17

    Article  PubMed  Google Scholar 

  22. Papagiouvannis G, Theodosis-Nobelos P, Kourounakis PN, Rekka EA (2021) Multi-target directed compounds with antioxidant and/or anti- inflammatory properties as potent agents for alzheimer’s disease. Med Chem 17:1086–1103. https://doi.org/10.2174/1573406416666201013161303

    Article  CAS  PubMed  Google Scholar 

  23. Ohl K, Tenbrock K, Kipp M (2016) Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp Neurol 277:58–67. https://doi.org/10.1016/j.expneurol.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  24. Kees F (2013) Dimethyl fumarate: a Janus-faced substance? Expert Opin Pharmacother 14:1559–1567. https://doi.org/10.1517/14656566.2013.804912

    Article  CAS  PubMed  Google Scholar 

  25. Nellessen A, Nyamoya S, Zendedel A, Slowik A, Wruck C, Beyer C et al (2020) Nrf2 deficiency increases oligodendrocyte loss, demyelination, neuroinflammation and axonal damage in an MS animal model. Metab Brain Dis 35:353–362. https://doi.org/10.1007/s11011-019-00488-z

    Article  PubMed  Google Scholar 

  26. Dong Y, D’Mello C, Pinsky W, Lozinski BM, Kaushik DK, Ghorbani S et al (2021) Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat Neurosci 24:489–503. https://doi.org/10.1038/s41593-021-00801-z

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira B, Mendes F, Osório N, Caseiro A, Gabriel A, Valado A (2013) Glutathione in multiple sclerosis. Br J Biomed Sci 70:75–79. https://doi.org/10.1080/09674845.2013.11669939

    Article  CAS  PubMed  Google Scholar 

  28. Li S, Vana AC, Ribeiro R, Zhang Y (2011) Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis. Neuroscience 184:107–119. https://doi.org/10.1016/j.neuroscience.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  29. Ortiz GG, Macías-Islas MA, Pacheco-Moisés FP, Cruz-Ramos JA, Sustersik S, Barba EA, Aguayo A (2009) Oxidative stress is increased in serum from Mexican patients with relapsing-remitting multiple sclerosis. Dis Markers 26:35–39. https://doi.org/10.3233/DMA-2009-0602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Brück W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74:848–861. https://doi.org/10.1002/ana.23974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 102:9936–9941. https://doi.org/10.1073/pnas.0502552102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosito M, Testi C, Parisi G, Cortese B, Baiocco P, Di Angelantonio S (2020) Exploring the use of dimethyl fumarate as microglia modulator for neurodegenerative diseases treatment. Antioxidants (Basel) 9:700. https://doi.org/10.3390/antiox9080700

    Article  CAS  PubMed  Google Scholar 

  33. Scuderi SA, Ardizzone A, Paterniti I, Esposito E, Campolo M (2020) Antioxidant and anti-inflammatory effect of Nrf2 inducer dimethyl fumarate in neurodegenerative diseases. Antioxidants (Basel) 9:630. https://doi.org/10.3390/antiox9070630

    Article  CAS  PubMed  Google Scholar 

  34. Yan N, Xu Z, Qu C, Zhang J (2021) Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway. Int Immunopharmacol 98:107844. https://doi.org/10.1016/j.intimp.2021.107844

    Article  CAS  PubMed  Google Scholar 

  35. Shih HJ, Yen JC, Chiu AW, Chow YC, Pan WH, Wang TY, Huang CJ (2015) FTY720 mitigates torsion/detorsion-induced testicular injury in rats. J Surg Res 196:325–331. https://doi.org/10.1016/j.jss.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  36. Yevgi R, Demir R (2021) Oxidative stress activity of fingolimod in multiple sclerosis. Clin Neurol Neurosurg 202:106500. https://doi.org/10.1016/j.clineuro.2021.106500

    Article  PubMed  Google Scholar 

  37. Colombo E, Di Dario M, Capitolo E, Chaabane L, Newcombe J, Martino G, Farina C (2014) Fingolimod may support neuroprotection via blockade of astrocyte nitric oxide. Ann Neurol 76:325–337. https://doi.org/10.1002/ana.24217

    Article  CAS  PubMed  Google Scholar 

  38. Tasset I, Bahamonde C, Agüera E, Conde C, Cruz AH, Pérez-Herrera A et al (2013) Effect of natalizumab on oxidative damage biomarkers in relapsing-remitting multiple sclerosis. Pharmacol Rep 65:624–631. https://doi.org/10.1016/s1734-1140(13)71039-9

    Article  CAS  PubMed  Google Scholar 

  39. Kipp M (2020) Does siponimod exert direct effects in the central nervous system? Cells 9:1771. https://doi.org/10.3390/cells9081771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, EXPAND Clinical Investigators et al (2018) Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391:1263–1273. https://doi.org/10.1016/S0140-6736(18)30475-6

    Article  CAS  PubMed  Google Scholar 

  41. Colombo E, Bassani C, De Angelis A, Ruffini F, Ottoboni L, Comi G et al (2020) Siponimod (BAF312) activates Nrf2 while hampering NFκB in human astrocytes, and protects from astrocyte-induced neurodegeneration. Front Immunol 11:635. https://doi.org/10.3389/fimmu.2020.00635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang L, Guo K, Zhou J, Zhang X, Yin S, Peng J et al (2021) Ponesimod protects against neuronal death by suppressing the activation of A1 astrocytes in early brain injury after experimental subarachnoid hemorrhage. J Neurochem 158:880–897. https://doi.org/10.1111/jnc.15457

    Article  CAS  PubMed  Google Scholar 

  43. Pouzol L, Piali L, Bernard CC, Martinic MM, Steiner B, Clozel M (2019) Therapeutic potential of ponesimod alone and in combination with dimethyl fumarate in experimental models of multiple sclerosis. Innov Clin Neurosci 16:22–30

    PubMed  PubMed Central  Google Scholar 

  44. Lassiter G, Melancon C, Rooney T, Murat AM, Kaye JS, Kaye AM et al (2020) Ozanimod to treat relapsing forms of multiple sclerosis: a comprehensive review of disease, drug efficacy and side effects. Neurol Int 12:89–108. https://doi.org/10.3390/neurolint12030016

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fronza M, Lorefice L, Frau J, Cocco E (2021) An overview of the efficacy and safety of ozanimod for the treatment of relapsing multiple sclerosis. Drug Des Devel Ther 15:1993–2004. https://doi.org/10.2147/DDDT.S240861

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cohan S, Kumar J, Arndorfer S, Zhu X, Zivkovic M, Tencer T (2021) Comparative efficacy and safety of ozanimod and dimethyl fumarate for relapsing-remitting multiple sclerosis using matching-adjusted indirect comparison. CNS Drugs 35:795–804. https://doi.org/10.1007/s40263-021-00805-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Agresti C, Mechelli R, Olla S, Veroni C, Eleuteri C, Ristori G, Salvetti M (2020) Oxidative status in multiple sclerosis and off-targets of antioxidants: the case of edaravone. Curr Med Chem 27:2095–2105. https://doi.org/10.2174/0929867326666190124122752

    Article  CAS  PubMed  Google Scholar 

  48. Bakhtiari M, Ghasemi N, Salehi H, Amirpour N, Kazemi M, Mardani M (2021) Evaluation of Edaravone effects on the differentiation of human adipose derived stem cells into oligodendrocyte cells in multiple sclerosis disease in rats. Life Sci 282:119812. https://doi.org/10.1016/j.lfs.2021.119812

    Article  CAS  PubMed  Google Scholar 

  49. Minnelli C, Laudadio E, Galeazzi R, Rusciano D, Armeni T, Stipa P et al (2019) Synthesis, characterization and antioxidant properties of a new lipophilic derivative of edaravone. Antioxidants (Basel) 8:258. https://doi.org/10.3390/antiox8080258

    Article  CAS  PubMed  Google Scholar 

  50. Faissner S, Mishra M, Kaushik DK, Wang J, Fan Y, Silva C et al (2017) Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic. Nat Commun 8:1990. https://doi.org/10.1038/s41467-017-02119-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown D, Moezzi D, Dong Y, Koch M, Yong VW (2021) Combination of hydroxychloroquine and indapamide attenuates neurodegeneration in models relevant to multiple sclerosis. Neurotherapeutics 18:387–400. https://doi.org/10.1007/s13311-020-01002-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dziedzic A, Saluk-Bijak J, Miller E, Bijak M (2020) Metformin as a potential agent in the treatment of multiple sclerosis. Int J Mol Sci 21:5957. https://doi.org/10.3390/ijms21175957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Horakova O, Kroupova P, Bardova K, Buresova J, Janovska P, Kopecky J, Rossmeisl M (2019) Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport. Sci Rep 9:6156. https://doi.org/10.1038/s41598-019-42531-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S (2009) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182:8005–8014. https://doi.org/10.4049/jimmunol.0803563

    Article  CAS  PubMed  Google Scholar 

  55. Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R et al (2016) Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol 292:58–67. https://doi.org/10.1016/j.jneuroim.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  56. Paintlia AS, Paintlia MK, Mohan S, Singh AK, Singh I (2013) AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. Am J Pathol 183:526–541. https://doi.org/10.1016/j.ajpath.2013.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stevanović I, Ninković M, Stanojević J, Mančić B, Stojanović I (2021) Therapeutic potential of agmatine in the experimental autoimmune encephalomyelitis. Vojnosanit Pregl 78:834–843. https://doi.org/10.2298/VSP190707145S

    Article  Google Scholar 

  58. Chai J, Luo L, Hou F, Fan X, Yu J, Ma W et al (2016) Agmatine reduces lipopolysaccharide-mediated oxidant response via activating PI3K/Akt pathway and up-regulating Nrf2 and HO-1expression in macrophages. PLoS ONE 11:e0163634. https://doi.org/10.1371/journal.pone.0163634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Atalay S, Jarocka-Karpowicz I, Skrzydlewska E (2019) Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants (Basel) 9:21. https://doi.org/10.3390/antiox9010021

    Article  CAS  PubMed  Google Scholar 

  60. Ghovanloo MR, Shuart NG, Mezeyova J, Dean RA, Ruben PC, Goodchild SJ (2018) Inhibitory effects of cannabidiol on voltage-dependent sodium currents. J Biol Chem 293:16546–16558. https://doi.org/10.1074/jbc.RA118.004929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fiani B, Sarhadi KJ, Soula M, Zafar A (2020) Quadri SA (2020) current application of cannabidiol (CBD) in the management and treatment of neurological disorders. Neurol Sci 41(11):3085–3098. https://doi.org/10.1007/s10072-020-04514-2

    Article  PubMed  Google Scholar 

  62. Kozela E, Juknat A, Kaushansky N, Ben-Nun A, Coppola G, Vogel Z (2015) Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells. J Neuroinflammation 12:52. https://doi.org/10.1186/s12974-015-0273-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perras C (2005) Sativex for the management of multiple sclerosis symptoms. Issues Emerg Health Technol 72:1–4

    Google Scholar 

  64. Koppel BS, Brust JC, Fife T, Bronstein J, Youssof S, Gronseth G, Gloss D (2014) Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the guideline development subcommittee of the american academy of neurology. Neurology 82:1556–1563. https://doi.org/10.1212/WNL.0000000000000363

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pedre B, Barayeu U, Ezeriņa D, Dick TP (2021) The mechanism of action of N-acetylcysteine (NAC): the emerging role of H2S and sulfane sulfur species. Pharmacol Ther 228:107916. https://doi.org/10.1016/j.pharmthera.2021

    Article  CAS  PubMed  Google Scholar 

  66. Bavarsad Shahripour R, Harrigan MR, Alexandrov AV (2014) N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain and behavior 4:108–122. https://doi.org/10.1002/brb3.208

    Article  PubMed  PubMed Central  Google Scholar 

  67. Monti DA, Zabrecky G, Leist TP, Wintering N, Bazzan AJ, Zhan T, Newberg AB (2020) N-acetyl cysteine administration is associated with increased cerebral glucose metabolism in patients with multiple sclerosis: an exploratory study. Front Neurol 11:88. https://doi.org/10.3389/fneur.2020.00088

    Article  PubMed  PubMed Central  Google Scholar 

  68. Holmay MJ, Terpstra M, Coles LD, Mishra U, Ahlskog M, Öz G et al (2013) N-Acetylcysteine boosts brain and blood glutathione in gaucher and parkinson diseases. Clin Neuropharmacol 36:103–106. https://doi.org/10.1097/WNF.0b013e31829ae713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Giraud SN, Caron CM, Pham-Dinh D, Kitabgi P, Nicot AB (2010) Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes. Proc Natl Acad Sci USA 107:8416–8421. https://doi.org/10.1073/pnas.0910627107

    Article  PubMed  PubMed Central  Google Scholar 

  70. Farfan-Garcia ED, Castillo-Hernandez MC, Pinto-Almazan R, Rivas-Arancibia S, Gallardo JM, Guerra-Araiza C (2014) Tibolone prevents oxidation and ameliorates cholinergic deficit induced by ozone exposure in the male rat hippocampus. Neurochem Res 39:1776–1786. https://doi.org/10.1007/s11064-014-1385-0

    Article  CAS  PubMed  Google Scholar 

  71. Pinto-Almazan R, Segura-Uribe JJ, Soriano-Ursua MA, Farfan-Garcia ED, Gallardo JM, Guerra-Araiza C (2018) Effect of tibolone pretreatment on kinases and phosphatases that regulate the expression and phosphorylation of Tau in the hippocampus of rats exposed to ozone. Neural Regen Res 13:440–448. https://doi.org/10.4103/1673-5374.228726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mancino DNJ, Lima A, Roig P, García Segura LM, De Nicola AF, Garay LI (2022) Tibolone restrains neuroinflammation in mouse experimental autoimmune encephalomyelitis. J Neuroendocrinol 34:e13078. https://doi.org/10.1111/jne.13078

    Article  CAS  PubMed  Google Scholar 

  73. Valerio M, Liu HB, Heffner R, Zivadinov R, Ramanathan M, Weinstock-Guttman B, Awad AB (2011) Phytosterols ameliorate clinical manifestations and inflammation in experimental autoimmune encephalomyelitis. Inflamm Res 60:457–465. https://doi.org/10.1007/s00011-010-0288-z

    Article  CAS  PubMed  Google Scholar 

  74. Baig MW, Nasir B, Waseem D, Majid M, Khan MZI, Haq IU (2020) Withametelin: a biologically active withanolide in cancer, inflammation, pain and depression. Saudi Pharm J 28:1526–1537. https://doi.org/10.1016/j.jsps.2020.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khan A, Shal B, Khan AU, Bibi T, Islam SU, Baig MW et al (2021) Withametelin, a novel phytosterol, alleviates neurological symptoms in EAE mouse model of multiple sclerosis via modulation of Nrf2/HO-1 and TLR4/NF-κB signaling. Neurochem Int 151:105211. https://doi.org/10.1016/j.neuint.2021.105211

    Article  CAS  PubMed  Google Scholar 

  76. Gutiérrez-Miranda B, Gallardo I, Melliou E, Cabero I, Álvarez Y, Magiatis P et al (2020) Oleacein attenuates the pathogenesis of experimental autoimmune encephalomyelitis through both antioxidant and anti-inflammatory effects. Antioxidants (Basel) 9:1161. https://doi.org/10.3390/antiox9111161

    Article  CAS  PubMed  Google Scholar 

  77. Michaličková D, Hrnčíř T, Canová NK, Slanař O (2020) Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. Eur J Pharmacol 873:172973. https://doi.org/10.1016/j.ejphar.2020.172973

    Article  CAS  PubMed  Google Scholar 

  78. Jesus M, Martins AP, Gallardo E, Silvestre S (2016) Diosgenin: recent highlights on pharmacology and analytical methodology. J Anal Methods Chem 2016:4156293. https://doi.org/10.1155/2016/4156293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xiao L, Guo D, Hu C, Shen W, Shan L, Li C et al (2012) Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination. Glia 60(7):1037–1052

    Article  PubMed  Google Scholar 

  80. Zeinali H, Baluchnejadmojarad T, Roghani M (2021) Diosgenin ameliorates cellular and molecular changes in multiple sclerosis in C57BL/6 mice. Mult Scler Relat Disord 55:103211. https://doi.org/10.1016/j.msard.2021.103211

    Article  CAS  PubMed  Google Scholar 

  81. Ramos-Hryb AB, Pazini FL, Kaster MP, Rodrigues ALS (2017) Therapeutic potential of ursolic acid to manage neurodegenerative and psychiatric diseases. CNS Drugs 31:1029–1041. https://doi.org/10.1007/s40263-017-0474-4

    Article  CAS  PubMed  Google Scholar 

  82. Yamamoto S, Sakemoto C, Iwasa K, Maruyama K, Shimizu K, Yoshikawa K (2020) Ursolic acid treatment suppresses cuprizone-induced demyelination and motor dysfunction via upregulation of IGF-1. J Pharmacol Sci 144:119–122. https://doi.org/10.1016/j.jphs.2020.08.002

    Article  CAS  PubMed  Google Scholar 

  83. Ye P, Li L, Richards RG, DiAugustine RP, D’Ercole AJ (2002) Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci 22:6041–6051. https://doi.org/10.1523/JNEUROSCI.22-14-06041.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Y, Li X, Ciric B, Curtis MT, Chen WJ, Rostami A, Zhang GX (2020) A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination. Proc Natl Acad Sci U S A 117:9082–9093. https://doi.org/10.1073/pnas.2000208117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Emamgholipour S, Hossein-Nezhad A, Sahraian MA, Askarisadr F, Ansari M (2016) Evidence for possible role of melatonin in reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes. Life Sci 145:34–41. https://doi.org/10.1016/j.lfs.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  86. Farez MF, Mascanfroni ID, Méndez-Huergo SP, Yeste A, Murugaiyan G, Garo LP et al (2015) Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell 162:1338–1352. https://doi.org/10.1016/j.cell.2015.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rathnasamy G, Ling EA, Kaur C (2014) Therapeutic implications of melatonin in cerebral edema. Histol Histopathol 29:1525–1538. https://doi.org/10.14670/HH-29.1525

    Article  CAS  PubMed  Google Scholar 

  88. Miller E, Walczak A, Majsterek I, Kędziora J (2013) Melatonin reduces oxidative stress in the erythrocytes of multiple sclerosis patients with secondary progressive clinical course. J Neuroimmunol 257:97–101. https://doi.org/10.1016/j.jneuroim.2013.02.012

    Article  CAS  PubMed  Google Scholar 

  89. Melamud L, Golan D, Luboshitzky R, Lavi I, Miller A (2012) Melatonin dysregulation, sleep disturbances and fatigue in multiple sclerosis. J Neurol Sci 314:37–40. https://doi.org/10.1016/j.jns.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  90. Lucas RM, Byrne SN, Correale J, Ilschner S, Hart PH (2015) Ultraviolet radiation, vitamin D and multiple sclerosis. Neurodegener Dis Manag 5:413–424. https://doi.org/10.2217/nmt.15.33

    Article  PubMed  Google Scholar 

  91. Munger KL, Åivo J, Hongell K, Soilu-Hänninen M, Surcel HM, Ascherio A (2016) Vitamin D status during pregnancy and risk of multiple sclerosis in offspring of women in the finnish maternity cohort. JAMA Neurol 73:515–519. https://doi.org/10.1001/jamaneurol.2015.4800

    Article  PubMed  PubMed Central  Google Scholar 

  92. Stein MS, Liu Y, Gray OM, Baker JE, Kolbe SC, Ditchfield MR et al (2011) A randomized trial of high-dose vitamin D2 in relapsing-remitting multiple sclerosis. Neurology 77:1611–1618. https://doi.org/10.1212/WNL.0b013e3182343274

    Article  CAS  PubMed  Google Scholar 

  93. Hart PH, Jones AP, Trend S, Cha L, Fabis-Pedrini MJ, Cooper MN et al (2018) A randomised, controlled clinical trial of narrowband UVB phototherapy for clinically isolated syndrome: The PhoCIS study. Mult Scler J Exp Transl Clin 4:2055217318773112. https://doi.org/10.1177/2055217318773112

    Article  PubMed  PubMed Central  Google Scholar 

  94. Oliveira SR, Simão ANC, Alfieri DF, Flauzino T, Kallaur AP, Mezzaroba L et al (2017) Vitamin D deficiency is associated with disability and disease progression in multiple sclerosis patients independently of oxidative and nitrosative stress. J Neurol Sci 381:213–219. https://doi.org/10.1016/j.jns.2017.07.046

    Article  CAS  PubMed  Google Scholar 

  95. Salzer J, Hallmans G, Nyström M, Stenlund H, Wadell G, Sundström P (2012) Vitamin D as a protective factor in multiple sclerosis. Neurology 79:2140–2145. https://doi.org/10.1016/j.jns.2017.07.046

    Article  CAS  PubMed  Google Scholar 

  96. Mayne CG, Spanier JA, Relland LM, Williams CB, Hayes CE (2011) 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur J Immunol 41:822–832. https://doi.org/10.1002/eji.201040632

    Article  CAS  PubMed  Google Scholar 

  97. Cantorna MT, Snyder L, Lin YD, Yang L (2015) Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 7:3011–3021. https://doi.org/10.3390/nu7043011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang M, Qin Z, Zhu Y (2013) Vitamin D-binding protein in cerebrospinal fluid is associated with multiple sclerosis progression. Mol Neurobiol 47:946–956. https://doi.org/10.1007/s12035-012-8387-1

    Article  CAS  PubMed  Google Scholar 

  99. Sandberg L, Biström M, Salzer J, Vågberg M, Svenningsson A, Sundström P (2016) Vitamin D and axonal injury in multiple sclerosis. Mult Scler 22:1027–1031. https://doi.org/10.1177/1352458515606986

    Article  CAS  PubMed  Google Scholar 

  100. Soilu-Hänninen M, Aivo J, Lindström BM, Elovaara I, Sumelahti ML, Färkkilä M et al (2012) A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon β-1b in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 83:565–571. https://doi.org/10.1136/jnnp-2011-301876

    Article  PubMed  Google Scholar 

  101. Rotstein DL, Healy BC, Malik MT, Carruthers RL, Musallam AJ, Kivisakk P et al (2015) Effect of vitamin D on MS activity by disease-modifying therapy class. Neurol Neuroimmunol Neuroinflamm 2:e167. https://doi.org/10.1212/NXI.0000000000000167

    Article  PubMed  PubMed Central  Google Scholar 

  102. Khosravi-Largani M, Pourvali-Talatappeh P, Rousta AM, Karimi-Kivi M, Noroozi E, Mahjoob A et al (2018) A review on potential roles of vitamins in incidence, progression, and improvement of multiple sclerosis. eNeurologicalSci 10:37–44. https://doi.org/10.1016/j.ensci.2018.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  103. Taş S, Sarandöl E, Dirican M (2014) Vitamin B6 supplementation improves oxidative stress and enhances serum paraoxonase/arylesterase activities in streptozotocin-induced diabetic rats. Sci World J. https://doi.org/10.1155/2014/351598

    Article  Google Scholar 

  104. Prakhova LN, Ilves AG, Savintceva ZI, Mineev KK, Nikiforova IG, Rubanik KS, Kataeva GV (2016) Neuroprotection therapy of multiple sclerosis with high doses of ethylmethylhydroxypyridine succinate. Zh Nevrol Psikhiatr Im S S Korsakova 116:73–78. https://doi.org/10.17116/jnevro201611610273-78

    Article  CAS  PubMed  Google Scholar 

  105. Moghaddasi M, Mamarabadi M, Mohebi N, Razjouyan H, Aghaei M (2013) Homocysteine, vitamin B12 and folate levels in Iranian patients with multiple sclerosis: a case control study. Clin Neurol Neurosurg 115:1802–1805. https://doi.org/10.1016/j.clineuro.2013.05.007

    Article  PubMed  Google Scholar 

  106. Zhu Y, He ZY, Liu HN (2011) Meta-analysis of the relationship between homocysteine, vitamin B12, folate, and multiple sclerosis. J Clin Neurosci 18:933–938. https://doi.org/10.1016/j.jocn.2010.12.022

    Article  CAS  PubMed  Google Scholar 

  107. Nozari E, Ghavamzadeh S, Razazian N (2019) The effect of vitamin B12 and folic acid supplementation on serum homocysteine, anemia status and quality of life of patients with multiple sclerosis. Clin Nutr Res 8:36–45. https://doi.org/10.7762/cnr.2019.8.1.36

    Article  PubMed  PubMed Central  Google Scholar 

  108. Shang Z, Cai W, Cao Y, Wang F, Wang Z, Lu J, Zhang J (2017) An integrated strategy for rapid discovery and identification of the sequential piperine metabolites in rats using ultra high-performance liquid chromatography/high resolution mass spectrometery. J Pharm Biomed Anal 146:387–401. https://doi.org/10.1016/j.jpba.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  109. Mittal R, Gupta RL (2000) In vitro antioxidant activity of piperine. Methods Find Exp Clin Pharmacol 22:271–274. https://doi.org/10.1358/mf.2000.22.5.796644

    Article  CAS  PubMed  Google Scholar 

  110. Roshanbakhsh H, Elahdadi Salmani M, Dehghan S, Nazari A, Javan M, Pourabdolhossein F (2020) Piperine ameliorated memory impairment and myelin damage in lysolecethin induced hippocampal demyelination. Life Sci 253:117671. https://doi.org/10.1016/j.lfs.2020.117671

    Article  CAS  PubMed  Google Scholar 

  111. Fletcher JL, Murray SS, Xiao J (2018) Brain-derived neurotrophic factor in central nervous system myelination: a new mechanism to promote myelin plasticity and repair. Int J Mol Sci 19:4131. https://doi.org/10.3390/ijms19124131

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ikram M, Ullah R, Khan A, Kim MO (2020) Ongoing research on the role of gintonin in the management of neurodegenerative disorders. Cells 9:1464. https://doi.org/10.3390/cells9061464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Choi JH, Oh J, Lee MJ, Ko SG, Nah SY, Cho IH (2021) Gintonin mitigates experimental autoimmune encephalomyelitis by stabilization of Nrf2 signaling via stimulation of lysophosphatidic acid receptors. Brain Behav Immun 93:384–398. https://doi.org/10.1016/j.bbi.2020.12.004

    Article  CAS  PubMed  Google Scholar 

  114. Schmitz K, Brunkhorst R, de Bruin N, Mayer CA, Häussler A, Ferreiros N et al (2017) Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis. Acta Neuropathol Commun 5:42. https://doi.org/10.1186/s40478-017-0446-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li W, Zhang Z, Zhang K, Xue Z, Li Y, Zhang Z et al (2016) Arctigenin suppress Th17 cells and ameliorates experimental autoimmune encephalomyelitis through AMPK and PPAR-γ/ROR-γt signaling. Mol Neurobiol 53:5356–5366. https://doi.org/10.1186/s40478-017-0446-4

    Article  CAS  PubMed  Google Scholar 

  116. Kim TW, Kim Y, Jung W, Kim DE, Keum H, Son Y, Jon S (2021) Bilirubin nanomedicine ameliorates the progression of experimental autoimmune encephalomyelitis by modulating dendritic cells. J Control Release 331:74–84. https://doi.org/10.1016/j.jconrel.2021.01.019

    Article  CAS  PubMed  Google Scholar 

  117. Ferreira GC, McKenna MC (2017) L-carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem Res 42:1661–1675. https://doi.org/10.1007/s11064-017-2288-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Assaf N, Shalby AB, Khalil WK, Ahmed HH (2012) Biochemical and genetic alterations of oxidant/antioxidant status of the brain in rats treated with dexamethasone: protective roles of melatonin and acetyl-L-carnitine. J Physiol Biochem 68:77–90. https://doi.org/10.1007/s13105-011-0121-3

    Article  CAS  PubMed  Google Scholar 

  119. Zidan A, Hedya SE, Elfeky DM, Abdin AA (2018) The possible anti-apoptotic and antioxidant effects of acetyl l-carnitine as an add-on therapy on a relapsing-remitting model of experimental autoimmune encephalomyelitis in rats. Biomed Pharmacother 103:1302–1311. https://doi.org/10.1016/j.biopha.2018.04.173

    Article  CAS  PubMed  Google Scholar 

  120. Rajda C, Bergquist J, Vécsei L (2007) Kynurenines, redox disturbances and neurodegeneration in multiple sclerosis. J Neural Transm Suppl 72:323–329. https://doi.org/10.1007/978-3-211-73574-9_40

    Article  CAS  Google Scholar 

  121. Biernacki T, Sandi D, Bencsik K, Vécsei L (2020) Kynurenines in the pathogenesis of multiple sclerosis: therapeutic perspectives. Cells 9:1564. https://doi.org/10.3390/cells9061564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Majlath Z, Annus A, Vecsei L (2018) Kynurenine system and multiple sclerosis, pathomechanism and drug targets with an emphasis on laquinimod. Curr Drug Targets 19:805–814. https://doi.org/10.2174/1389450117666161223125417

    Article  CAS  PubMed  Google Scholar 

  123. Ruffini F, Rossi S, Bergamaschi A, Brambilla E, Finardi A, Motta C et al (2013) Laquinimod prevents inflammation-induced synaptic alterations occurring in experimental autoimmune encephalomyelitis. Mult Scler 19:1084–1094. https://doi.org/10.1177/1352458512469698

    Article  CAS  PubMed  Google Scholar 

  124. Comi G, Jeffery D, Kappos L, Montalban X, Boyko A, Rocca MA, Filippi M, ALLEGRO Study Group (2012) Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 366:1000–1009. https://doi.org/10.1056/NEJMoa1104318

    Article  CAS  PubMed  Google Scholar 

  125. Theodosis-Nobelos P, Papagiouvannis G, Rekka EA (2021) A Review on vitamin E natural analogues and on the design of synthetic vitamin E derivatives as cytoprotective agents. Mini Rev Med Chem 21:10–22. https://doi.org/10.2174/1389557520666200807132617

    Article  CAS  PubMed  Google Scholar 

  126. Khalilian B, Madadi S, Fattahi N, Abouhamzeh B (2021) Coenzyme Q10 enhances remyelination and regulate inflammation effects of cuprizone in corpus callosum of chronic model of multiple sclerosis. J Mol Histol 52:125–134. https://doi.org/10.1007/s10735-020-09929-x

    Article  CAS  PubMed  Google Scholar 

  127. Sanoobar M, Eghtesadi S, Azimi A, Khalili M, Jazayeri S, Reza Gohari M (2013) Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with relapsing-remitting multiple sclerosis. Int J Neurosci 123:776–782. https://doi.org/10.3109/00207454.2013.801844

    Article  CAS  PubMed  Google Scholar 

  128. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P (2018) Coenzyme Q10 supplementation in aging and disease. Front Physiol 9:44. https://doi.org/10.3389/fphys.2018.00044

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mao P, Manczak M, Shirendeb UP, Reddy PH (2013) MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Biochim Biophys Acta 1832:2322–2331. https://doi.org/10.1016/j.bbadis.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  130. Avetisyan AV, Samokhin AN, Alexandrova IY, Zinovkin RA, Simonyan RA, Bobkova NV (2016) Mitochondrial dysfunction in neocortex and hippocampus of olfactory bulbectomized mice, a model of alzheimer’s disease. Biochemistry (Mosc) 81:615–623. https://doi.org/10.1134/S0006297916060080

    Article  CAS  PubMed  Google Scholar 

  131. Fetisova EK, Muntyan MS, Lyamzaev KG, Chernyak BV (2019) Therapeutic Effect of the mitochondria-targeted antioxidant SkQ1 on the culture model of multiple sclerosis. Oxid Med Cell Longev 2019:2082561. https://doi.org/10.1155/2019/2082561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nesterenko AM, Kholina EG, Lyamzaev KG, Mulkidjanian AY, Chernyak BV (2019) Molecular dynamics modeling of the interaction of cationic fluorescent lipid peroxidation-sensitive probes with the mitochondrial membrane. Dokl Biochem Biophys 486:220–223. https://doi.org/10.1134/S1607672919030153

    Article  CAS  PubMed  Google Scholar 

  133. Vorobjeva N, Prikhodko A, Galkin I, Pletjushkina O, Zinovkin R, Sud’ina G et al (2017) Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur J Cell Biol 96:254–265. https://doi.org/10.1016/j.ejcb.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  134. Sousa BC, Pitt AR, Spickett CM (2017) Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radic Biol Med 111:294–308. https://doi.org/10.1016/j.freeradbiomed.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  135. Bispo VS, de Arruda Campos IP, Di Mascio P, Medeiros MH (2016) Structural elucidation of a carnosine-acrolein adduct and its quantification in human urine samples. Sci Rep 6:19348. https://doi.org/10.1038/srep19348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Colzani M, De Maddis D, Casali G, Carini M, Vistoli G, Aldini G (2016) Reactivity, selectivity, and reaction mechanisms of aminoguanidine, hydralazine, pyridoxamine, and carnosine as sequestering agents of reactive carbonyl species: a comparative study. ChemMedChem 11:1778–1789. https://doi.org/10.1002/cmdc.201500552

    Article  CAS  PubMed  Google Scholar 

  137. Regazzoni L, de Courten B, Garzon D, Altomare A, Marinello C, Jakubova M et al (2016) A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect. Sci Rep 6:27224. https://doi.org/10.1038/srep27224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I, Przybyłowska M (2020) Therapeutic potential of carnosine and its derivatives in the treatment of human diseases. Chem Res Toxicol 33:1561–1578. https://doi.org/10.1021/acs.chemrestox.0c00010

    Article  CAS  PubMed  Google Scholar 

  139. Jukić I, Kolobarić N, Stupin A, Matić A, Kozina N, Mihaljević Z et al (2021) Carnosine, small but mighty-prospect of use as functional ingredient for functional food formulation. Antioxidants (Basel) 10:1037. https://doi.org/10.3390/antiox10071037

    Article  CAS  PubMed  Google Scholar 

  140. Spaas J, Franssen WMA, Keytsman C, Blancquaert L, Vanmierlo T, Bogie J et al (2021) Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation. J Neuroinflammation 18:255. https://doi.org/10.1186/s12974-021-02306-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Simicic J, Ostojić S (2019) Medium-term carnosine supplementation positively affects patient-reported outcomes in multiple sclerosis. J Neurol Sci 405:104. https://doi.org/10.1016/j.jns.2019.10.1761

    Article  Google Scholar 

  142. Zanini D, Jezdimirovic T, Stajer V, Ostojic J, Maksimovic N, Ostojic SM (2020) Dietary supplementation with L-carnosine improves patient-reported outcomes, autonomic nervous system performance, and brain metabolism in 3 adult patients with multiple sclerosis. Nutr Res 84:63–69. https://doi.org/10.1016/j.nutres.2020.09.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PTN. Analyzed the data: PTN. Wrote the manuscript: PTN. Editing of the manuscript: PTN, EAR. Critically reviewed the article: PTN, EAR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Panagiotis Theodosis-Nobelos.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participation

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theodosis-Nobelos, P., Rekka, E.A. Efforts Towards Repurposing of Antioxidant Drugs and Active Compounds for Multiple Sclerosis Control. Neurochem Res 48, 725–744 (2023). https://doi.org/10.1007/s11064-022-03821-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03821-8

Keywords

Navigation