Skip to main content

Advertisement

Log in

Stellate Ganglion Block Improves Postoperative Cognitive Dysfunction in aged rats by SIRT1-mediated White Matter Lesion Repair

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Postoperative cognitive dysfunction (POCD) is a common complication of the central nervous system after surgery, especially in elderly patients. Many factors can influence POCD, one of which is white matter lesion. Nowadays, stellate ganglion block (SGB) is considered as an effective intervention for postoperative cognitive dysfunction and SIRT1 may play a role in that, but the exact mechanism remains unclear. Therefore, the underlying mechanisms that SGB improves postoperative cognitive dysfunction through SIRT1 in aged rats and its association with white matter lesion are yet to be elucidated. The role of SIRT1 in the process that stellate ganglion block improves the cognitive impairment, and its association with white matter lesion was investigated using splenectomy-induced POCD model. To investigate this result further, we performed transection of the cervical sympathetic trunk on the basis of POCD model, and the role of SIRT1 was then verified again by intraperitoneal injection of EX527 (5 mg/kg) five min before surgery. Data show that SGB treatment has neuroprotective effects in POCD rats. SGB treatment can ameliorate cognitive impairment, neuroinflammation and neuronal apoptosis in white matter. Moreover, SGB treatment enhanced the expression of SIRT1 in the hippocampus and white matter, decreased NF-κB activity in the hippocampus and white matter. It also increased the levels of inflammatory factor in serum and white matter, primarily at the level of anti-inflammatory factor. These findings indicated that SIRT1-mediate white matter repair could be a new therapeutic target for neurodegenerative illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All relevant data are available in the main text or from the authors.

Abbreviations

DMSO :

Dimethyl sulfoxide

ELISA :

Enzyme-linked immunosorbent assay

EMSA :

Electromobility shift assays

IgG-HRP :

Immunoglobulin G-horseradish peroxidase

IL-6 :

Interleukin-6

IL-10 :

Interleukin-10

MRI :

Magnetic resonance imaging

MWM :

Morris water maze test

NF-κB :

Nuclear factor- kappa B

POCD :

Postoperative cognitive dysfunction

PMSF :

phenylmethylsulfonyl fluoride

PVDF :

Polyvinylidene difluoride

RIPA :

radio-immunoprecipitation assay

SD rats :

Sprague-Dawley rats

SGB :

Stellate ganglion block

SIRT1 :

Silent information regulator 1

TNF-α :

Tumor necrosis factor-alpha

WMH :

White matter hyperintensity

WML :

White matter lesion

References

  1. Duan M, Liu F, Fu H, Feng S, Wang X, Wang T (2021) Effect of Ulinastatin on Early Postoperative Cognitive Dysfunction in Elderly Patients Undergoing Surgery: A Systemic Review and Meta-Analysis. Front Neurosci 15:618589. https://doi.org/10.3389/fnins.2021.618589

    Article  PubMed  PubMed Central  Google Scholar 

  2. Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST, Rasmussen LS et al (2018) Recommendations for the Nomenclature of Cognitive Change Associated with Anaesthesia and Surgery-2018. Anesthesiology 129:872–879. https://doi.org/10.1016/j.bja.2017.11.087

    Article  PubMed  CAS  Google Scholar 

  3. Boone MD, Sites B, von Recklinghausen FM, Mueller A, Taenzer AH, Shaefi S (2020) Economic Burden of Postoperative Neurocognitive Disorders Among US Medicare Patients. JAMA Netw Open 3:e208931. https://doi.org/10.1001/jamanetworkopen.2020.8931

    Article  PubMed  PubMed Central  Google Scholar 

  4. Urits I, Orhurhu V, Jones M, Hoyt D, Seats A, Viswanath O (2019) Current Perspectives on Postoperative Cognitive Dysfunction in the Ageing Population. Turk J Anaesthesiol Reanim 47:439–447. https://doi.org/10.5152/TJAR.2019.75299

    Article  PubMed  PubMed Central  Google Scholar 

  5. Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS (2009) Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 110:548–555. https://doi.org/10.1097/ALN.0b013e318195b569. ISPOCD Group

  6. Gold S, Forryan S (2019) Postoperative cognitive decline: A current problem with a difficult future. Trends Anaesth Crit 24:49–58. https://doi.org/10.1016/0023-9690(81)90020-5

    Article  Google Scholar 

  7. Etzioni DA, Liu JH, Maggard MA, Ko CY (2003) The aging population and its impact on the surgery workforce. Ann Surg 238:170–177. https://doi.org/10.1097/01.SLA.0000081085.98792.3d

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shoair OA, Grasso Ii MP, Lahaye LA, Daniel R, Biddle CJ, Slattum PW (2015) Incidence and risk factors for postoperative cognitive dysfunction in older adults undergoing major noncardiac surgery: A prospective study. J Anaesthesiol Clin Pharmacol 31:30–36. https://doi.org/10.4103/0970-9185.150530

    Article  PubMed  PubMed Central  Google Scholar 

  9. Han D, Li Z, Liu T, Yang N, Li Y, He J et al (2020) Prebiotics Regulation of Intestinal Microbiota Attenuates Cognitive Dysfunction Induced by Surgery Stimulation in APP/PS1 Mice. Aging Dis 11:1029–1045. https://doi.org/10.14336/AD.2020.0106

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang CM, Chen WC, Zhang Y, Lin S, He HF (2021) Update on the Mechanism and Treatment of Sevoflurane-Induced Postoperative Cognitive Dysfunction. Front Aging Neurosci 13:702231. https://doi.org/10.3389/fnagi.2021.702231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Subramaniyan S, Terrando N (2019) Neuroinflammation and Perioperative Neurocognitive Disorders. Anesth Analg 128:781–788. https://doi.org/10.1213/ANE.0000000000004053

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li TT, Wan Q, Zhang X, Xiao Y, Sun LY, Zhang YR (2022) Stellate ganglion block reduces inflammation and improves neurological function in diabetic rats during ischemic stroke. Neural Regen Res 17:1991–1997. https://doi.org/10.4103/1673-5374.335162

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dai D, Zheng B, Yu Z, Lin S, Tang Y,Chen M et al (2021) Right stellate ganglion block improves learning and memory dysfunction and hippocampal injury in rats with sleep deprivation. BMC Anesthesiol 21:272. https://doi.org/10.1186/s12871-021-01486-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rae Olmsted KL, Bartoszek M, Mulvaney S, McLean B, Turabi A, Young R et al (2020) Effect of Stellate Ganglion Block Treatment on Posttraumatic Stress Disorder Symptoms: A Randomized Clinical Trial. JAMA Psychiatry 77:130–138. https://doi.org/10.1001/jamapsychiatry.2019.3474

    Article  PubMed  Google Scholar 

  15. Narouze S (2014) Ultrasound-guided stellate ganglion block: safety and efficacy. Curr Pain Headache Rep 18:424. https://doi.org/10.1007/s11916-014-0424-5

    Article  PubMed  Google Scholar 

  16. Hey M, Wilson I, Johnson MI (2011) Stellate ganglion blockade (SGB) for refractory index finger pain - a case report[J]. Annals of Physical and Rehabilitation Medicine, 2011, 54: 181–188. https://doi.org/10.1016/j.rehab.2011.03.001

  17. Carron H, Litwiller R (1975) Stellate ganglion block. Anesth Analg,1975,54:567 – 70. https://doi.org/10.1213/00000539-197509000-00002

  18. Summers MR, Nevin RL (2017) Stellate Ganglion Block in the Treatment of Post-traumatic Stress Disorder: A Review of Historical and Recent Literature. Pain Pract 17:546–553. https://doi.org/10.1111/papr.12503

    Article  PubMed  Google Scholar 

  19. Zhao HY, Yang GT, Sun NN, Kong Y, Liu YF (2017) Efficacy and safety of stellate ganglion block in chronic ulcerative colitis. World J Gastroenterol 23:533–539. https://doi.org/10.3748/wjg.v23.i3.533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chen W, Chen B, Wang F, Wu Q, Liu W, Wei H et al (2021) Clinical Study of Stellate Ganglion Block Combined with General Anesthesia on Hemodynamics, Cognitive Function, and Gastrointestinal Function in Elderly Patients Undergoing Partial Hepatectomy. Evid Based Complement Alternat Med, 2021: 1426753. https://doi.org/10.1155/2021/1426753

  21. Zhang Y, Cheng H, Xu C, Bao H, Shi H, Ge Y et al (2014) [Effects of ultrasound-guided stellate ganglion block on cerebral oxygen metabolism and postoperative cognitive dysfunction in the elderly]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 31:1107–1110. https://doi.org/10.7507/1001-5515.20140208

    Article  PubMed  CAS  Google Scholar 

  22. Yan J, Luo A, Gao J, Tang X, Zhao Y, Zhou B et al (2019) The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery. Am J Transl Res 11:1555–1568. https://doi.org/10.1016/j.physletb.2019.05.051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li Y, Liu T, Li Y, Han D, Hong J, Yang N et al (2020) Baicalin Ameliorates Cognitive Impairment and Protects Microglia from LPS-Induced Neuroinflammation via the SIRT1/HMGB1 Pathway. Oxid Med Cell Longev,2020: 4751349. https://doi.org/10.1155/2020/4751349

  24. Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465. https://doi.org/10.1146/annurev.biochem.74.082803.133500

    Article  PubMed  CAS  Google Scholar 

  25. Zhou Y, Wang S, Li Y, Yu S, Zhao Y (2018) SIRT1/PGC-1α Signaling Promotes Mitochondrial Functional Recovery and Reduces Apoptosis after Intracerebral Hemorrhage in Rats. Front Mol Neurosci 10:443. https://doi.org/10.3389/fnmol.2017.00443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J et al (2008) Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci 28:9989–9996. https://doi.org/10.1523/JNEUROSCI.3257-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635. https://doi.org/10.1091/mbc.e05-01-0033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M et al (2015) Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 6:8896. https://doi.org/10.1038/ncomms9896

    Article  PubMed  CAS  Google Scholar 

  29. Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120. https://doi.org/10.1016/j.neuron.2004.08.028

    Article  PubMed  CAS  Google Scholar 

  30. Ferland CL, Hawley WR, Puckett RE, Wineberg K, Lubin FD, Dohanich GP et al (2013) Sirtuin activity in dentate gyrus contributes to chronic stress-induced behavior and extracellular signal-regulated protein kinases 1 and 2 cascade changes in the hippocampus. Biol Psychiatry 74:927–935. https://doi.org/10.1016/j.biopsych.2013.07.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: Actions and mechanisms of action. Trends Neurosci 18:130–136. https://doi.org/10.1016/0166-2236(95)93890-a

    Article  PubMed  CAS  Google Scholar 

  32. Lopez OL, Becker JT, Chang Y, Klunk WE, Mathis C, Price J et al (2018) Amyloid deposition and brain structure as long-term predictors of MCI, dementia, and mortality. Neurology,90: e1920-e1928. https://doi.org/10.1212/WNL.0000000000005549

  33. Kumon Y, Watanabe H, Tagawa M, Inoue A, Ohnishi T, Kunieda T (2021) Relationship between Deep White Matter Hyperintensities on Magnetic Resonance Imaging and Postoperative Cognitive Function Following Clipping of Unruptured Intracranial Aneurysm. Neurol Med Chir (Tokyo) 61:152–161. https://doi.org/10.2176/nmc.oa.2020-0290

    Article  PubMed  Google Scholar 

  34. Maekawa K, Baba T, Otomo S, Morishita S, Tamura N (2014) Low pre-existing gray matter volume in the medial temporal lobe and white matter lesions are associated with postoperative cognitive dysfunction after cardiac surgery. PLoS ONE 9:e87375. https://doi.org/10.1371/journal.pone.0087375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Breteler MM, van Swieten JC, Bots ML, Grobbee DE, Claus JJ, van den Hout JH et al (1994) Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology 44:1246–1252. https://doi.org/10.1212/wnl.44.7.1246

    Article  PubMed  CAS  Google Scholar 

  36. Dufouil C, Godin O, Chalmers J, Coskun O, MacMahon S, Tzourio-Mazoyer N et al (2009) Severe cerebral white matter hyperintensities predict severe cognitive decline in patients with cerebrovascular disease history. Stroke 40:2219–2221. https://doi.org/10.1161/STROKEAHA.108.540633

    Article  PubMed  Google Scholar 

  37. Lambert C, Benjamin P, Zeestraten E, Lawrence AJ, Barrick TR, Markus HS (2016) Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease[J]. Brain, 2016, 139(Pt 4): 1136–1151. https://doi.org/10.1093/brain/aww009

  38. Bi Y, Liu S, Yu X, Wu M, Wang Y (2014) Adaptive and regulatory mechanisms in aged rats with postoperative cognitive dysfunction. Neural Regeneration Research 9:534–539. https://doi.org/10.4103/1673-5374.130084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chen Y, Guo L, Lang H, Hu X, Jing S, Luo M et al (2018) Effect of a Stellate Ganglion Block on Acute Lung Injury in Septic Rats. Inflammation 41:1601–1609. https://doi.org/10.1007/s10753-018-0803-x

    Article  PubMed  CAS  Google Scholar 

  40. Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260. https://doi.org/10.1016/0023-9690(81)90020-5

    Article  Google Scholar 

  41. Lissner LJ, Wartchow KM, Toniazzo AP, Gonçalves CA, Rodrigues L (2021) Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience. Pharmacol Biochem Behav 210:173273. https://doi.org/10.1016/j.pbb.2021.173273

    Article  PubMed  CAS  Google Scholar 

  42. Chen Y, Lian F, Lu Q, Peng S, Li J, Huang S et al (2020) L-Theanine Attenuates Isoflurane-Induced Injury in Neural Stem Cells and Cognitive Impairment in Neonatal Mice. Biol Pharm Bull 43:938–945. https://doi.org/10.1248/bpb.b19-00790

    Article  PubMed  CAS  Google Scholar 

  43. Tasbihgou SR, Absalom AR (2021) Postoperative neurocognitive disorders. Korean J Anesthesiol 74:15–22. https://doi.org/10.4097/kja.20294

    Article  PubMed  Google Scholar 

  44. Bedford PD (1955) Adverse cerebral effects of anaesthesia on old people. Lancet 269:259–263. https://doi.org/10.1016/s0140-6736(55)92689-1

    Article  PubMed  CAS  Google Scholar 

  45. Liu Q, Hou A, Zhang Y, Guo Y, Li J, Yao Y et al (2019) MiR-190a potentially ameliorates postoperative cognitive dysfunction by regulating Tiam1. BMC Genomics 20:670. https://doi.org/10.1186/s12864-019-6035-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT, Heilman KM et al (2008) Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 108:18–30. https://doi.org/10.1097/01.anes.0000296071.19434.1e

    Article  PubMed  Google Scholar 

  47. Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J et al (1998) Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet 351:857–861. https://doi.org/10.1016/s0140-6736(97)07382-0

    Article  PubMed  CAS  Google Scholar 

  48. Rundshagen I (2014) Postoperative cognitive dysfunction. Dtsch Arztebl Int 111:119–125. https://doi.org/10.3238/arztebl.2014.0119

    Article  PubMed  PubMed Central  Google Scholar 

  49. Terrando N, Brzezinski M, Degos V, Eriksson LI, Kramer JH, Leung JM et al (2011) Perioperative cognitive decline in the aging population. Mayo Clin Proc 86:885–893. https://doi.org/10.4065/mcp.2011.0332

    Article  PubMed  PubMed Central  Google Scholar 

  50. Qian G, Wang Y (2020) Serum Metabolomics of Early Postoperative Cognitive Dysfunction in Elderly Patients Using Liquid Chromatography and Q-TOF Mass Spectrometry. Oxid Med Cell Longev, 2020: 8957541. https://doi.org/10.1155/2020/8957541

  51. Qiu LL, Luo D, Zhang H, Shi YS, Li YJ, Wu D et al (2016) Nox-2-Mediated Phenotype Loss of Hippocampal Parvalbumin Interneurons Might Contribute to Postoperative Cognitive Decline in Aging Mice.Front Aging Neurosci., 2016, 8: 234. https://doi.org/10.3389/fnagi.2016.00234

  52. Li Z, Zhu Y, Kang Y, Qin S, Chai J (2022) Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Front Cell Neurosci 16:843069. https://doi.org/10.3389/fncel.2022.843069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Liu L, Liu C, Fang L (2021) AMPK–SIRT1 pathway dysfunction contributes to neuron apoptosis and cognitive impairment induced by sevoflurane. Mol Med Rep 23:56. https://doi.org/10.3892/mmr.2020.11694

    Article  PubMed  CAS  Google Scholar 

  54. Hovens IB, Schoemaker RG, van der Zee EA, Absalom AR, Heineman E, van Leeuwen BL (2014) Postoperative cognitive dysfunction: Involvement of neuroinflammation and neuronal functioning. Brain Behav Immun 38:202–210. https://doi.org/10.1016/j.bbi.2014.02.002

    Article  PubMed  CAS  Google Scholar 

  55. Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N et al (2015) Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling. Cell 163:1730–1741. https://doi.org/10.1016/j.cell.2015.11.023

    Article  PubMed  CAS  Google Scholar 

  56. Femenía T, Giménez-Cassina A, Codeluppi S, Fernández-Zafra T, Katsu-Jiménez Y, Terrando N et al (2018) Disrupted Neuroglial Metabolic Coupling after Peripheral Surgery. J Neurosci 38:452–464. https://doi.org/10.1523/JNEUROSCI.1797-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nomi JS, Marshall E, Zaidel E, Biswal B, Castellanos FX, Dick AS et al (2019) Diffusion weighted imaging evidence of extra-callosal pathways for interhemispheric communication after complete commissurotomy. Brain Struct Funct 224:1897–1909. https://doi.org/10.1007/s00429-019-01864-2

    Article  PubMed  PubMed Central  Google Scholar 

  58. Han QY, Zhang H, Zhang X, He DS, Wang SW, Cao X et al (2019) dl-3-n-butylphthalide preserves white matter integrity and alleviates cognitive impairment in mice with chronic cerebral hypoperfusion.CNS Neurosci Ther. 25:1042–1053. https://doi.org/10.1111/cns.13189

  59. Ulivi L, Kanber B, Prados F, Davagnanam I, Merwick A, Chan E et al (2020) White matter integrity correlates with cognition and disease severity in Fabry disease. Brain 143:3331–3342. https://doi.org/10.1093/brain/awaa282

    Article  PubMed  Google Scholar 

  60. Forkel SJ, Friedrich P, Thiebaut de Schotten M, Howells H (2022) White matter variability, cognition, and disorders: a systematic review. Brain Struct Funct 227:529–544. https://doi.org/10.1007/s00429-021-02382-w

    Article  PubMed  Google Scholar 

  61. Gao Y, Tang H, Nie K, Zhu R, Gao L, Feng S et al (2019) Hippocampal damage and white matter lesions contribute to cognitive impairment in MPTP-lesioned mice with chronic cerebral hypoperfusion. Behav Brain Res 368:111885. https://doi.org/10.1016/j.bbr.2019.03.054

    Article  PubMed  Google Scholar 

  62. de Groot JC, de Leeuw FE, Oudkerk M, van Gijn J, Hofman A, Jolles J et al (2000) Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 47:145–151. https://doi.org/10.1002/1531-8249(200002)47:2<145::aid-ana3>3.3.co;2-g

  63. Freeze WM, Jacobs HIL, de Jong JJ, Verheggen ICM, Gronenschild EHBM, Palm WM et al (2020) White matter hyperintensities mediate the association between blood-brain barrier leakage and information processing speed. Neurobiol Aging 85:113–122. https://doi.org/10.1016/j.neurobiolaging.2019.09.017

    Article  PubMed  Google Scholar 

  64. Xu M, Wang MM, Gao Y, Keep RF, Shi Y (2019) The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke.Neurobiol Dis, 2019, 126: 13–22. https://doi.org/10.1016/j.nbd.2018.07.008

  65. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R et al (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14. https://doi.org/10.1136/jnnp.70.1.9

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lebel C, Deoni S (2018) The development of brain white matter microstructure. NeuroImage 182:207–218. https://doi.org/10.1016/j.neuroimage.2017.12.097

    Article  PubMed  Google Scholar 

  67. Carlier A, Dols A, Oudega M, Sienaert P, Bouckaert F, Stek ML et al (2022) Impact of Inflammation on Cognitive Functioning After Electroconvulsive Therapy in Older Patients with Depression with and Without White Matter Hyperintensities. Am J Geriatr Psychiatry 30:514–518. https://doi.org/10.1016/j.jagp.2021.09.003

    Article  PubMed  Google Scholar 

  68. Nakao S, Yamamoto T, Kimura S, Mino T, Iwamoto T (2019) Brain white matter lesions and postoperative cognitive dysfunction: a review. J Anesth 33:336–340. https://doi.org/10.1007/s00540-019-02613-9

    Article  PubMed  Google Scholar 

  69. Haber M, James J, Kim J, Sangobowale M, Irizarry R, Ho J et al (2018) Minocycline plus N-acteylcysteine induces remyelination, synergistically protects oligodendrocytes and modifies neuroinflammation in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab 38:1312–1326. https://doi.org/10.1177/0271678X17718106

    Article  PubMed  CAS  Google Scholar 

  70. Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, Matías-Guiu J (2020) Experimental models of demyelination and remyelination. Neurologia (Engl Ed) 35:32–39. https://doi.org/10.1016/j.nrl.2017.07.002

    Article  PubMed  CAS  Google Scholar 

  71. Kira JI (2021) Anti-Neurofascin 155 Antibody-Positive Chronic Inflammatory Demyelinating Polyneuropathy/Combined Central and Peripheral Demyelination: Strategies for Diagnosis and Treatment Based on the Disease Mechanism. Front Neurol 12:665136. https://doi.org/10.3389/fneur.2021.665136

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang J, Mao J, Wang R, Li S, Wu B, Yuan Y (2020) Kaempferol Protects Against Cerebral Ischemia Reperfusion Injury Through Intervening Oxidative and Inflammatory Stress Induced Apoptosis. Front Pharmacol, 2020, 11: 424. https://doi.org/10.3389/fphar.2020.00424

  73. Gao S, Wake H, Gao Y, Wang D, Mori S, Liu K et al (2019) Histidine-rich glycoprotein ameliorates endothelial barrier dysfunction through regulation of NF-κB and MAPK signal pathway. Br J Pharmacol 176:2808–2824. https://doi.org/10.1111/bph.14711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Hou L, Li B, Ding D, Kang L, Wang X (2019) CREB-B acts as a key mediator of NPF/NO pathway involved in phase-related locomotor plasticity in locusts. PLoS Genet 15:e1008176. https://doi.org/10.1371/journal.pgen.1008176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ke B, Zhao Z, Ye X, Gao Z, Manganiello V, Wu B et al (2015) Inactivation of NF-κB p65 (RelA) in Liver Improves Insulin Sensitivity and Inhibits cAMP/PKA Pathway. Diabetes 64:3355–3362. https://doi.org/10.2337/db15-0242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Chen X, Lu Y, Zhang Z, Wang J, Yang H, Liu G (2015) Intercellular interplay between Sirt1 signalling and cell metabolism in immune cell biology. Immunology 145:455–467. https://doi.org/10.1111/imm.12473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang XJ, Wang H et al (2021) NAD + improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflammation 18:207. https://doi.org/10.1186/s12974-021-02250-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fusco S, Spinelli M, Cocco S, Ripoli C, Mastrodonato A, Natale F et al (2019) Maternal insulin resistance multigenerationally impairs synaptic plasticity and memory via gametic mechanisms. Nat Commun 10:4799. https://doi.org/10.1038/s41467-019-12793-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kodali M, Attaluri S, Madhu LN, Shuai B, Upadhya R, Gonzalez JJ et al (2021) Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell 20:e13277. https://doi.org/10.1111/acel.13277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Baldassarro VA, Stanzani A, Giardino L, Calzà L, Lorenzini L (2022) Neuroprotection and neuroregeneration: roles for the white matter. Neural Regen Res 17:2376–2380. https://doi.org/10.4103/1673-5374.335834

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bonetto G, Belin D, Káradóttir RT (2021) Myelin: A gatekeeper of activity-dependent circuit plasticity?[J].Science. 374:eaba6905. https://doi.org/10.1126/science.aba6905

  82. Shahsavani N, Kataria H, Karimi-Abdolrezaee S (2021) Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 1867:166117. https://doi.org/10.1016/j.bbadis.2021.166117

    Article  PubMed  CAS  Google Scholar 

  83. Jiang YB, Wei KY, Zhang XY, Feng H, Hu R (2019) White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci Ther 25:1113–1125. https://doi.org/10.1111/cns.13226

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Research Project of Education Department of Jiangxi Province (No.GJJ200111).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design and animal study: Jun Zhang, Yang Liu, Hejian Li; data acquisition and analysis: Qin Liu, Yanhui Hu, Shuchun Yu; manuscript draft: Jun Zhang; manuscript revision: Yong Chen. All authors read and agreed to the final manuscript of the manuscript.

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Competing Interests

All authors declare that they have no competing interests.

Consent to Participate

and Publish.

Not applicable.

Ethical Approval

Our study was approved by the Animal Ethics Committee of Nanchang University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Y., Li, H. et al. Stellate Ganglion Block Improves Postoperative Cognitive Dysfunction in aged rats by SIRT1-mediated White Matter Lesion Repair. Neurochem Res 47, 3838–3853 (2022). https://doi.org/10.1007/s11064-022-03800-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03800-z

Keywords

Navigation