Skip to main content

Advertisement

Log in

Gabapentin Alleviates Brain Injury in Intracerebral Hemorrhage Through Suppressing Neuroinflammation and Apoptosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuroinflammation plays an important role in brain tissue injury during intracerebral hemorrhage. Gabapentin can reduce inflammation and oxidative stress through inhibiting nuclear factor κB (NFκB) signals. Here, we showed that gabapentin reduced brain tissue injury in ICH through suppressing NFκB-mediated neuroinflammation. ICH was induced by injecting collagenase IV into the right striatum of Sprague–Dawley rats. PC12 and BV2 cells injury induced by Hemin were used to simulate ICH in vitro. Inflammation and apoptosis were assessed in rat brain tissue and in vitro cells. The neurobehavioral scores were significantly decreased in ICH rats compared with sham rats. Phosphorylated IκB-α and cleaved caspase3, and apoptosis rate were significantly higher in tissue surrounding the hematoma than in brain tissues from rats subjected to sham surgery. Furthermore, serum IL-6 levels in ICH rats were higher than in sham rats. Gabapentin treatment significantly improved the behavioral scores, decreased levels of phosphorylated IκB-α and cleaved caspase3, apoptosis rate, and serum IL-6 level in ICH rats. Hemin-treated BV2 cells displayed higher levels of phosphorylated IκB-α, cleaved caspase3, and IL-6 in the supernatant compared with vehicle-treated cells. Hemin treatment induced a significantly lower level of peroxisome proliferator-activated receptor γ (PPARγ) in BV2 cells. BV2-PC12 co-culture cells treated by hemin displayed higher levels of cleaved caspase3 in PC12 cells. Furthermore, gabapentin treatment could reduce these effects induced by hemin and the protective effects of gabapentin were significantly attenuated by PPARγ inhibitor. Therefore, gabapentin may reduce inflammation and apoptosis induced by the ICH through PPARγ-NFκB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets d analyzed during the current study available from the corresponding author on reasonable request.

Abbreviations

ICH:

Intracerebral hemorrhage

SBI:

Secondary brain injury

NFκB:

Nuclear factor κB

IKK:

IκB kinase

PPARγ:

Peroxisome proliferator-activated receptor γ

IL-6:

Interleukin-6

TNF-α:

Tumor necrosis factor α

IFN-γ:

Interferon gamma

References

  1. Urday S, Kimberly WT, Beslow LA, Vortmeyer AO, Selim MH, Rosand J, Simard JM, Sheth KN (2015) Targeting secondary injury in intracerebral haemorrhage–perihaematomal oedema. Nat Rev Neurol 11:111–122

    Article  PubMed  Google Scholar 

  2. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63

    Article  PubMed  Google Scholar 

  3. Wen J, Yang CY, Lu J, Wang XY (2018) Ptprj-as1 mediates inflammatory injury after intracerebral hemorrhage by activating NF-kappaB pathway. Eur Rev Med Pharmacol Sci 22:2817–2823

    CAS  PubMed  Google Scholar 

  4. Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, Weih F, Schneider A, Schwaninger M (2005) Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab 25:30–40

    Article  PubMed  Google Scholar 

  5. Denes A, Pinteaux E, Rothwell NJ, Allan SM (2011) Interleukin-1 and stroke: biomarker, harbinger of damage, and therapeutic target. Cerebrovasc Dis 32:517–527

    Article  CAS  PubMed  Google Scholar 

  6. Wang M, Ye X, Hu J, Zhao Q, Lv B, Ma W, Wang W, Yin H, Hao Q, Zhou C et al (2020) NOD1/RIP2 signalling enhances the microglia-driven inflammatory response and undergoes crosstalk with inflammatory cytokines to exacerbate brain damage following intracerebral haemorrhage in mice. J Neuroinflammation 17:364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeng J, Chen Y, Ding R, Feng L, Fu Z, Yang S, Deng X, Xie Z, Zheng S (2017) Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-kappaB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflam 14:119

    Article  CAS  Google Scholar 

  8. Zhang Y, Chen Y, Wu J, Manaenko A, Yang P, Tang J, Fu W, Zhang JH (2015) Activation of dopamine D2 receptor suppresses neuroinflammation through alphaB-crystalline by inhibition of NF-kappaB nuclear translocation in experimental ICH mice model. Stroke 46:2637–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang ZL, Song Y, Li F, Huang QB (2019) Bimodal distribution of nuclear factor-kappaB activation and expression of subunits in experimental models of intracerebral hemorrhage in vivo. J Stroke Cerebrovasc Dis 28:821–829

    Article  PubMed  Google Scholar 

  10. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388:548–554

    Article  CAS  PubMed  Google Scholar 

  11. Wagner KR (2007) Modeling intracerebral hemorrhage: glutamate, nuclear factor-kappa B signaling and cytokines. Stroke 38:753–758

    Article  CAS  PubMed  Google Scholar 

  12. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  CAS  PubMed  Google Scholar 

  13. Strosznajder AK, Wojtowicz S, Jezyna MJ, Sun GY, Strosznajder JB (2020) Recent insights on the role of PPAR-beta/delta in neuroinflammation and neurodegeneration, and its potential target for therapy. Neuromolecular Med 23:86–98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhao XR, Gonzales N, Aronowski J (2015) Pleiotropic role of PPARgamma in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-kappaB. CNS Neurosci Ther 21:357–366

    Article  CAS  PubMed  Google Scholar 

  15. Xu R, Wang S, Li W, Liu Z, Tang J, Tang X (2017) Activation of peroxisome proliferator-activated receptor-gamma by a 12/15-lipoxygenase product of arachidonic acid: a possible neuroprotective effect in the brain after experimental intracerebral hemorrhage. J Neurosurg 127:522–531

    Article  CAS  PubMed  Google Scholar 

  16. Maneuf YP, Gonzalez MI, Sutton KS, Chung FZ, Pinnock RD, Lee K (2003) Cellular and molecular action of the putative GABA-mimetic, gabapentin. Cell Mol Life Sci 60:742–750

    Article  CAS  PubMed  Google Scholar 

  17. Abdel-Salam OM, Sleem AA (2009) Study of the analgesic, anti-inflammatory, and gastric effects of gabapentin. Drug Discov Ther 3:18–26

    CAS  PubMed  Google Scholar 

  18. Anfuso CD, Olivieri M, Fidilio A, Lupo G, Rusciano D, Pezzino S, Gagliano C, Drago F, Bucolo C (2017) Gabapentin attenuates ocular inflammation: in vitro and in vivo studies. Front Pharmacol 8:173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Boudieu L, Mountadem S, Lashermes A, Meleine M, Ulmann L, Rassendren F, Aissouni Y, Sion B, Carvalho FA, Ardid D (2019) Blocking alpha2delta-1 subunit reduces bladder hypersensitivity and inflammation in a cystitis mouse model by decreasing NF-kB pathway activation. Front Pharmacol 10:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dias JM, de Brito TV, de Aguiar Magalhaes D, da Silva Santos PW, Batista JA, do Nascimento Dias EG, de Barros Fernandes H, Damasceno SR, Silva RO, Aragao KS, et al (2014) Gabapentin, a synthetic analogue of gamma aminobutyric acid, reverses systemic acute inflammation and oxidative stress in mice. Inflammation 37:1826–1836.

  21. Yamaguchi K, Kumakura S, Someya A, Iseki M, Inada E, Nagaoka I (2017) Antiinflammatory actions of gabapentin and pregabalin on the substance Pinduced mitogenactivated protein kinase activation in U373 MG human glioblastoma astrocytoma cells. Mol Med Rep 16:6109–6115

    Article  PubMed  CAS  Google Scholar 

  22. de Brito TV, Junior GJD, da Cruz Junior JS, Silva RO, da Silva Monteiro CE, Franco AX, Vasconcelos DFP, de Oliveira JS, da Silva Costa DV, Carneiro TB et al (2020) Gabapentin attenuates intestinal inflammation: role of PPAR-gamma receptor. Eur J Pharmacol 873:172974

    Article  PubMed  CAS  Google Scholar 

  23. Liu C, Liu C, Liu H, Gong L, Tao T, Shen Y, Zhu S, Shen A (2017) Increased expression of ubiquitin-specific protease 4 participates in neuronal apoptosis after intracerebral hemorrhage in adult rats. Cell Mol Neurobiol 37:427–435

    Article  CAS  PubMed  Google Scholar 

  24. Sun H, Li L, Zhou F, Zhu L, Ke K, Tan X, Xu W, Rui Y, Zheng H, Zhou Z, Yang H (2013) The member of high temperature requirement family HtrA2 participates in neuronal apoptosis after intracerebral hemorrhage in adult rats. J Mol Histol 44:369–379

    Article  CAS  PubMed  Google Scholar 

  25. Wu CH, Shyue SK, Hung TH, Wen S, Lin CC, Chang CF, Chen SF (2017) Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase reduces brain damage and attenuates neuroinflammation after intracerebral hemorrhage. J Neuroinflammation 14:230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yuan D, Shen J, Yan Y, Wu X, Li A, Guo A, Wu Y, Duan C, Shen J, Tang C et al (2014) Upregulated expression of SSTR1 is involved in neuronal apoptosis and is coupled to the reduction of bcl-2 following intracerebral hemorrhage in adult rats. Cell Mol Neurobiol 34:951–961

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Lu X, Hao Y, Tang L, He Z (2020) MicroRNA-26a-5p alleviates neuronal apoptosis and brain injury in intracerebral hemorrhage by targeting RAN binding protein 9. Acta Histochem 122:151571

    Article  CAS  PubMed  Google Scholar 

  28. Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M (1990) Collagenase-induced intracerebral hemorrhage in rats. Stroke 21:801–807

    Article  CAS  PubMed  Google Scholar 

  29. Lekic T, Tang J, Zhang JH (2008) Rat model of intracerebellar hemorrhage. Acta Neurochir Suppl 105:131–134

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura T, Hua Y, Keep RF, Park JW, Xi G, Hoff JT (2005) Estrogen therapy for experimental intracerebral hemorrhage in rats. J Neurosurg 103:97–103

    Article  CAS  PubMed  Google Scholar 

  31. Regan RF, Guo Y (1997) Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures. Brain Res 764:133–140

    Article  CAS  PubMed  Google Scholar 

  32. Luo Y, Ma H, Zhou JJ, Li L, Chen SR, Zhang J, Chen L, Pan HL (2018) Focal cerebral ischemia and reperfusion induce brain injury through alpha2delta-1-bound NMDA receptors. Stroke 49:2464–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9:167–176

    Article  PubMed  Google Scholar 

  34. Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11:720–731

    Article  CAS  PubMed  Google Scholar 

  35. Zheng H, Chen C, Zhang J, Hu Z (2016) Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc Dis 42:155–169

    Article  PubMed  Google Scholar 

  36. Zhao X, Zhang Y, Strong R, Grotta JC, Aronowski J (2006) 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 26:811–820

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Z, Liu Y, Huang Q, Su Y, Zhang Y, Wang G, Li F (2014) NF-kappaB activation and cell death after intracerebral hemorrhage in patients. Neurol Sci 35:1097–1102

    Article  PubMed  Google Scholar 

  38. Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U (1995) Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488

    Article  CAS  PubMed  Google Scholar 

  39. Schwarz EM, Van Antwerp D, Verma IM (1996) Constitutive phosphorylation of IkappaBalpha by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IkappaBalpha. Mol Cell Biol 16:3554–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding YX, Eerduna GW, Duan SJ, Li T, Liu RX, Zhang LM, Wang T, Fu FH (2021) Escin ameliorates the impairments of neurological function and blood brain barrier by inhibiting systemic inflammation in intracerebral hemorrhagic mice. Exp Neurol 337:113554

    Article  CAS  PubMed  Google Scholar 

  41. Liu ZC, Meng LQ, Song JH, Gao J (2018) Dynamic protein expression of NF-kappaB following rat intracerebral hemorrhage and its association with apoptosis. Exp Ther Med 16:3903–3908

    PubMed  PubMed Central  Google Scholar 

  42. Wang YX, Yan A, Ma ZH, Wang Z, Zhang B, Ping JL, Zhu JS, Zhou Y, Dai L (2011) Nuclear factor-kappaB and apoptosis in patients with intracerebral hemorrhage. J Clin Neurosci 18:1392–1395

    Article  PubMed  CAS  Google Scholar 

  43. Xu H, Cao J, Xu J, Li H, Shen H, Li X, Wang Z, Wu J, Chen G (2019) GATA-4 regulates neuronal apoptosis after intracerebral hemorrhage via the NF-kappaB/Bax/Caspase-3 pathway both in vivo and in vitro. Exp Neurol 315:21–31

    Article  CAS  PubMed  Google Scholar 

  44. Chincholkar M (2018) Analgesic mechanisms of gabapentinoids and effects in experimental pain models: a narrative review. Br J Anaesth 120:1315–1334

    Article  CAS  PubMed  Google Scholar 

  45. Levy YS, Streifler JY, Panet H, Melamed E, Offen D (2002) Hemin-induced apoptosis in PC12 and neuroblastoma cells: implications for local neuronal death associated with intracerebral hemorrhage. Neurotox Res 4:609–616

    Article  CAS  PubMed  Google Scholar 

  46. Laird MD, Wakade C, Alleyne CH Jr, Dhandapani KM (2008) Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. Free Radic Biol Med 45:1103–1114

    Article  CAS  PubMed  Google Scholar 

  47. Lander HM, Ogiste JS, Teng KK, Novogrodsky A (1995) p21ras as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem 270:21195–21198

    Article  CAS  PubMed  Google Scholar 

  48. Mohan S, Glushakov AV, Decurnou A, Narumiya S, Dore S (2013) Contribution of PGE2 EP1 receptor in hemin-induced neurotoxicity. Front Mol Neurosci 6:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu M, Xu Y, Han X, Liang C, Yin L, Xu L, Qi Y, Zhao Y, Peng J, Sun C (2014) Potent effects of flavonoid-rich extract from Rosa laevigata Michx fruit against hydrogen peroxide-induced damage in PC12 cells via attenuation of oxidative stress, inflammation and apoptosis. Molecules 19:11816–11832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ning X, Tao T, Shen J, Ji Y, Xie L, Wang H, Liu N, Xu X, Sun C, Zhang D et al (2017) The O-GlcNAc modification of CDK5 involved in neuronal apoptosis following in vitro intracerebral hemorrhage. Cell Mol Neurobiol 37:527–536

    Article  CAS  PubMed  Google Scholar 

  51. Tong X, Zhang J, Shen M, Zhang J (2020) Silencing of tenascin-C inhibited inflammation and apoptosis via PI3K/Akt/NF-kappaB signaling pathway in subarachnoid hemorrhage cell model. J Stroke Cerebrovasc Dis 29:104485

    Article  PubMed  Google Scholar 

  52. Dolphin AC (2018) Voltage-gated calcium channel alpha 2delta subunits: an assessment of proposed novel roles. F1000Res 7:1830

    Article  CAS  Google Scholar 

  53. Chen J, Li L, Chen SR, Chen H, Xie JD, Sirrieh RE, MacLean DM, Zhang Y, Zhou MH, Jayaraman V, Pan HL (2018) The alpha2delta-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep 22:2307–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hooper NM (2001) Determination of glycosyl-phosphatidylinositol membrane protein anchorage. Proteomics 1:748–755

    Article  CAS  PubMed  Google Scholar 

  55. Taylor CP, Harris EW (2020) Analgesia with gabapentin and pregabalin may involve N-methyl-d-aspartate receptors, neurexins, and thrombospondins. J Pharmacol Exp Ther 374:161–174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R & D Program Intergovernmental Cooperation on International Scientific and Technological Innovation of the Ministry of Science and Technology of China (2017YFE0110400), the National Natural Science Foundation of China (81870984), Special Project for the Construction of Hebei Province International Science and Technology Cooperation Base (193977143D), and Government funded Project on Training of Outstanding Clinical Medical Personnel and Basic Research Projects of Hebei Province in the Year of 2019.

Funding

Funding was provided by National Key R & D Program Intergovernmental Cooperation on International Scientific and Technological Innovation of the Ministry of Science and Technology of China (Grant No.: 2017YFE0110400), National Natural Science Foundation of China (Grant No.: 81870984), Special Project for the Construction of Hebei Province International Science and Technology Cooperation Base (Grant No.: 193977143D), Government funded Project on Training of Outstanding Clinical Medical Personnel and Basic Research Projects of Hebei Province in the Year of 2019

Author information

Authors and Affiliations

Authors

Contributions

XL, DL, and ZZ designed the study and write the manuscript. XL, BW, NY, LY, CN, ZS performed behavioral testing and immunohistostaining experiments and analyzed the data. XL, BW, LG, and ZZ, contributes to revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zongmao Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All animal usage and experimental protocols and surgical procedures were approved by the Ethics Committee of The Second Hospital of Hebei Medical University.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, B., Yu, N. et al. Gabapentin Alleviates Brain Injury in Intracerebral Hemorrhage Through Suppressing Neuroinflammation and Apoptosis. Neurochem Res 47, 3063–3075 (2022). https://doi.org/10.1007/s11064-022-03657-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03657-2

Keywords

Navigation