Skip to main content

Advertisement

Log in

Proteomics Reveals Long-Term Alterations in Signaling and Metabolic Pathways Following Both Myocardial Infarction and Chemically Induced Denervation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Myocardial infraction (MI) is the principal risk factor for the onset of heart failure (HF). Investigations regarding the physiopathology of MI progression to HF have revealed the concerted engagement of other tissues, such as the autonomic nervous system and the medulla oblongata (MO), giving rise to systemic effects, important in the regulation of heart function. Cardiac sympathetic afferent denervation following application of resiniferatoxin (RTX) attenuates cardiac remodelling and restores cardiac function following MI. While the physiological responses are well documented in numerous species, the underlying molecular responses during the initiation and progression from MI to HF remains unclear. We obtained multi-tissue time course proteomics with a murine model of HF induced by MI in conjunction with RTX application. We isolated tissue sections from the left ventricle (LV), MO, cervical spinal cord and cervical vagal nerves at four time points over a 12-week study. Bioinformatic analyses consistently revealed a high statistical enrichment for metabolic pathways in all tissues and treatments, implicating a central role of mitochondria in the tissue-cellular response to both MI and RTX. In fact, the additional functional pathways found to be enriched in these tissues, involving the cytoskeleton, vesicles and signal transduction, could be downstream of responses initiated by mitochondria due to changes in neuronal pulse frequency after a shock such as MI or the modification of such frequency communication from the heart to the brain after RTX application. Development of future experiments, based on our proteomic results, should enable the dissection of more precise mechanisms whereby metabolic changes in neuronal and cardiac tissues can effectively ameliorate the negative physiological effects of MI via RTX application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings from this study are available from the corresponding author upon reasonable request.

References

  1. Savarese G, Division of Cardiology, Department of Medicine, Karolinska Insitutet, Stockholm, Sweden, Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden et al (2017) Global public health burden of heart failure. Cardiac Fail Rev 3:7. https://doi.org/10.15420/cfr.2016:25:2

    Article  Google Scholar 

  2. Arif M, Klevstig M, Benfeitas R et al (2021) Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction. eLife 10:e66921. https://doi.org/10.7554/eLife.66921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Doran S, Arif M, Lam S et al (2021) Multi-omics approaches for revealing the complexity of cardiovascular disease. Brief Bioinform 22:bbab061. https://doi.org/10.1093/bib/bbab061

    Article  PubMed  PubMed Central  Google Scholar 

  4. Katz SD (2018) Pathophysiology of chronic systolic heart failure. A view from the periphery. Ann ATS 15:S38–S41. https://doi.org/10.1513/AnnalsATS.201710-789KV

    Article  Google Scholar 

  5. Muqtadar H, Testai FD, Gorelick PB (2012) The dementia of cardiac disease. Curr Cardiol Rep 14:732–740. https://doi.org/10.1007/s11886-012-0304-8

    Article  PubMed  Google Scholar 

  6. Amare AT, Schubert KO, Klingler-Hoffmann M et al (2017) The genetic overlap between mood disorders and cardiometabolic diseases: a systematic review of genome wide and candidate gene studies. Transl Psychiatry 7:e1007. https://doi.org/10.1038/tp.2016.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doehner W, Ural D, Haeusler KG et al (2018) Heart and brain interaction in patients with heart failure: overview and proposal for a taxonomy. A position paper from the Study Group on Heart and Brain Interaction of the Heart Failure Association: heart and brain interaction in heart failure. Eur J Heart Fail 20:199–215. https://doi.org/10.1002/ejhf.1100

    Article  PubMed  Google Scholar 

  8. Tahsili-Fahadan P, Geocadin RG (2017) Heart-brain axis: effects of neurologic injury on cardiovascular function. Circ Res 120:559–572. https://doi.org/10.1161/CIRCRESAHA.116.308446

    Article  CAS  PubMed  Google Scholar 

  9. Park CM, Williams ED, Chaturvedi N et al (2017) Associations between left ventricular dysfunction and brain structure and function: findings from the SABRE (Southall and Brent Revisited) Study. JAHA. https://doi.org/10.1161/JAHA.116.004898

    Article  PubMed  PubMed Central  Google Scholar 

  10. Suzuki H, Sumiyoshi A, Matsumoto Y et al (2015) Structural abnormality of the hippocampus associated with depressive symptoms in heart failure rats. NeuroImage 105:84–92. https://doi.org/10.1016/j.neuroimage.2014.10.040

    Article  PubMed  Google Scholar 

  11. Ovsenik A, Podbregar M, Fabjan A (2021) Cerebral blood flow impairment and cognitive decline in heart failure. Brain Behav. https://doi.org/10.1002/brb3.2176

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tromp J, Westenbrink BD, Ouwerkerk W et al (2018) Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 72:1081–1090. https://doi.org/10.1016/j.jacc.2018.06.050

    Article  CAS  PubMed  Google Scholar 

  13. Elam M, Sverrisdottir YB, Rundqvist B et al (2003) Pathological sympathoexcitation: how is it achieved? Acta Physiol Scand 177:405–411. https://doi.org/10.1046/j.1365-201X.2003.01080.x

    Article  CAS  PubMed  Google Scholar 

  14. May CN, Frithiof R, Hood SG et al (2010) Specific control of sympathetic nerve activity to the mammalian heart and kidney: control of cardiac and renal sympathetic nerve activity. Exp Physiol 95:34–40. https://doi.org/10.1113/expphysiol.2008.046342

    Article  CAS  PubMed  Google Scholar 

  15. Zhang DY, Anderson AS (2014) The sympathetic nervous system and heart failure. Cardiol Clin 32:33–45. https://doi.org/10.1016/j.ccl.2013.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  16. Despas F, Detis N, Dumonteil N et al (2009) Excessive sympathetic activation in heart failure with chronic renal failure: role of chemoreflex activation. J Hypertens 27:1849–1854. https://doi.org/10.1097/HJH.0b013e32832e8d0f

    Article  CAS  PubMed  Google Scholar 

  17. Despas F, Lambert E, Vaccaro A et al (2012) Peripheral chemoreflex activation contributes to sympathetic baroreflex impairment in chronic heart failure. J Hypertens 30:753–760. https://doi.org/10.1097/HJH.0b013e328350136c

    Article  CAS  PubMed  Google Scholar 

  18. Franchitto N, Despas F, Labrunee M et al (2013) Cardiorenal anemia syndrome in chronic heart failure contributes to increased sympathetic nerve activity. Int J Cardiol 168:2352–2357. https://doi.org/10.1016/j.ijcard.2013.01.023

    Article  PubMed  Google Scholar 

  19. Kishi T (2016) Deep and future insights into neuromodulation therapies for heart failure. J Cardiol 68:368–372. https://doi.org/10.1016/j.jjcc.2016.05.010

    Article  PubMed  Google Scholar 

  20. Kingma JG, Simard D, Rouleau JR (2017) Influence of cardiac nerve status on cardiovascular regulation and cardioprotection. WJC 9:508. https://doi.org/10.4330/wjc.v9.i6.508

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zahner MR, Li D-P, Chen S-R, Pan H-L (2003) Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J Physiol 551:515–523. https://doi.org/10.1113/jphysiol.2003.048207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coote JH, Chauhan RA (2016) The sympathetic innervation of the heart: important new insights. Auton Neurosci 199:17–23. https://doi.org/10.1016/j.autneu.2016.08.014

    Article  CAS  PubMed  Google Scholar 

  23. Chen W-W, Xiong X-Q, Chen Q et al (2015) Cardiac sympathetic afferent reflex and its implications for sympathetic activation in chronic heart failure and hypertension. Acta Physiol 213:778–794. https://doi.org/10.1111/apha.12447

    Article  CAS  Google Scholar 

  24. Yoshie K, Rajendran PS, Massoud L et al (2020) Cardiac TRPV1 afferent signaling promotes arrhythmogenic ventricular remodeling after myocardial infarction. JCI Insight 5:e124477. https://doi.org/10.1172/jci.insight.124477

    Article  PubMed Central  Google Scholar 

  25. Danielle S, Jasdeep K, Sala-Mercardo JA et al (2017) Pharmacological cardiac sympathetic afferent denervation in pacing-induced heart failure. FASEB J. https://doi.org/10.1096/fasebj.31.1_supplement.844.2

    Article  Google Scholar 

  26. Wang H-J, Wang W, Cornish KG et al (2014) Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension 64:745–755. https://doi.org/10.1161/HYPERTENSIONAHA.114.03699

    Article  CAS  PubMed  Google Scholar 

  27. Kermorgant M, Ben Salem J, Iacovoni JS et al (2021) Cardiac sensory afferents modulate susceptibility to anxio-depressive behaviour in a mouse model of chronic heart failure. Acta Physiol. https://doi.org/10.1111/apha.13601

    Article  Google Scholar 

  28. Foreman RD (1999) Mechanisms of cardiac pain. Annu Rev Physiol 61:143–167. https://doi.org/10.1146/annurev.physiol.61.1.143

    Article  CAS  PubMed  Google Scholar 

  29. Cechetto DF (2014) Cortical control of the autonomic nervous system: cortical autonomic control. Exp Physiol 99:326–331. https://doi.org/10.1113/expphysiol.2013.075192

    Article  PubMed  Google Scholar 

  30. Wu Y, Hu Z, Wang D et al (2020) Resiniferatoxin reduces ventricular arrhythmias in heart failure via selectively blunting cardiac sympathetic afferent projection into spinal cord in rats. Eur J Pharmacol 867:172836. https://doi.org/10.1016/j.ejphar.2019.172836

    Article  CAS  PubMed  Google Scholar 

  31. Capilupi MJ, Kerath SM, Becker LB (2020) Vagus nerve stimulation and the cardiovascular system. Cold Spring Harb Perspect Med 10:a034173. https://doi.org/10.1101/cshperspect.a034173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dusi V, De Ferrari GM, Mann DL (2020) Cardiac sympathetic-parasympathetic interaction. JACC Basic Transl Sci 5:811–814. https://doi.org/10.1016/j.jacbts.2020.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bibevski S, Dunlap ME (2011) Evidence for impaired vagus nerve activity in heart failure. Heart Fail Rev 16:129–135. https://doi.org/10.1007/s10741-010-9190-6

    Article  PubMed  Google Scholar 

  34. Li M, Zheng C, Kawada T et al (2019) Chronic vagal nerve stimulation exerts additional beneficial effects on the beta-blocker-treated failing heart. J Physiol Sci 69:295–303. https://doi.org/10.1007/s12576-018-0646-0

    Article  CAS  PubMed  Google Scholar 

  35. Liu J-J, Huang N, Lu Y et al (2015) Improving vagal activity ameliorates cardiac fibrosis induced by angiotensin II: in vivo and in vitro. Sci Rep 5:17108. https://doi.org/10.1038/srep17108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zannad F, De Ferrari GM, Tuinenburg AE et al (2015) Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J 36:425–433. https://doi.org/10.1093/eurheartj/ehu345

    Article  PubMed  Google Scholar 

  37. Chen EY, Tan CM, Kou Y et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128. https://doi.org/10.1186/1471-2105-14-128

    Article  Google Scholar 

  38. Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97. https://doi.org/10.1093/nar/gkw377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xie Z, Bailey A, Kuleshov MV et al (2021) Gene set knowledge discovery with Enrichr. Curr Protoc. https://doi.org/10.1002/cpz1.90

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pullen AB, Kain V, Serhan CN, Halade GV (2020) Molecular and cellular differences in cardiac repair of male and female mice. JAHA. https://doi.org/10.1161/JAHA.119.015672

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brar TK (2015) Effect of different phases of menstrual cycle on heart rate variability (HRV). JCDR. https://doi.org/10.7860/JCDR/2015/13795.6592

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mena F, Benoit L (2019) Molecular programs underlying differences in the expression of mood disorders in males and females. Brain Res 1719:89–103. https://doi.org/10.1016/j.brainres.2019.05.016

    Article  CAS  PubMed  Google Scholar 

  43. Wang H-J, Rozanski GJ, Zucker IH (2017) Cardiac sympathetic afferent reflex control of cardiac function in normal and chronic heart failure states: cardiac sympathetic afferent reflex control. J Physiol 595:2519–2534. https://doi.org/10.1113/JP273764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoshie K, Rajendran PS, Massoud L et al (2018) Cardiac vanilloid receptor-1 afferent depletion enhances stellate ganglion neuronal activity and efferent sympathetic response to cardiac stress. Am J Physiol Heart Circ Physiol 314:H954–H966. https://doi.org/10.1152/ajpheart.00593.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. The M, MacCoss MJ, Noble WS, Käll L (2016) Fast and accurate protein false discovery rates on large-scale proteomics data sets with percolator 3.0. J Am Soc Mass Spectrom 27:1719–1727. https://doi.org/10.1007/s13361-016-1460-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Orsburn BC (2021) Proteome discoverer—a community enhanced data processing suite for protein informatics. Proteomes 9:15. https://doi.org/10.3390/proteomes9010015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smith CL, Eppig JT (2009) The mammalian phenotype ontology: enabling robust annotation and comparative analysis. WIREs Syst Biol Med 1:390–399. https://doi.org/10.1002/wsbm.44

    Article  CAS  Google Scholar 

  48. R Foundation for Statistical Computing R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing R Core Team, Vienna

    Google Scholar 

  49. Gao C-H, Yu G, Cai P (2021) ggVennDiagram: an intuitive, easy-to-use, and highly customizable R package to generate Venn diagram. Front Genet 12:706907. https://doi.org/10.3389/fgene.2021.706907

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wickham H (2009) ggplot2. Springer, New York

    Book  Google Scholar 

  51. Jassal B, Matthews L, Viteri G et al (2019) The reactome pathway knowledgebase. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz1031

    Article  PubMed Central  Google Scholar 

  52. Ashburner M, Ball CA, Blake JA et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. The Gene Ontology Consortium, Carbon S, Douglass E et al (2021) The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res 49:D325–D334. https://doi.org/10.1093/nar/gkaa1113

    Article  CAS  Google Scholar 

  54. Kolde R (2019) pheatmap: pretty heatmaps

  55. Li D, Mabrouk OS, Liu T et al (2015) Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest. Proc Natl Acad Sci USA 112:E2073–E2082. https://doi.org/10.1073/pnas.1423936112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sapio MR, Neubert JK, LaPaglia DM et al (2018) Pain control through selective chemo-axotomy of centrally projecting TRPV1+ sensory neurons. J Clin Investig 128:1657–1670. https://doi.org/10.1172/JCI94331

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jeffry JA, Yu S-Q, Sikand P et al (2009) Selective targeting of TRPV1 expressing sensory nerve terminals in the spinal cord for long lasting analgesia. PLoS ONE 4:e7021. https://doi.org/10.1371/journal.pone.0007021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hong J, Lisco AM, Rudebush TL et al (2020) Identification of cardiac expression pattern of transient receptor potential vanilloid type 1 (TRPV1) receptor using a transgenic reporter mouse model. Neurosci Lett 737:135320. https://doi.org/10.1016/j.neulet.2020.135320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao S, Dai Y, Ning X et al (2021) Vagus nerve stimulation in early stage of acute myocardial infarction prevent ventricular arrhythmias and cardiac remodeling. Front Cardiovasc Med 8:648910. https://doi.org/10.3389/fcvm.2021.648910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Doehner W, Frenneaux M, Anker SD (2014) Metabolic impairment in heart failure. J Am Coll Cardiol 64:1388–1400. https://doi.org/10.1016/j.jacc.2014.04.083

    Article  PubMed  Google Scholar 

  61. Rosano GM, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy, Vitale C, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy (2018) Metabolic modulation of cardiac metabolism in heart failure. Cardiac Fail Rev 4:99. https://doi.org/10.15420/cfr.2018.18.2

    Article  Google Scholar 

  62. Zucker IH, Xiao L, Haack KKV (2014) The central renin–angiotensin system and sympathetic nerve activity in chronic heart failure. Clin Sci 126:695–706. https://doi.org/10.1042/CS20130294

    Article  CAS  Google Scholar 

  63. Philippou A, Xanthis D, Chryssanthopοulos C et al (2020) Heart failure-induced skeletal muscle wasting. Curr Heart Fail Rep 17:299–308. https://doi.org/10.1007/s11897-020-00468-w

    Article  PubMed  Google Scholar 

  64. Jahng JWS, Song E, Sweeney G (2016) Crosstalk between the heart and peripheral organs in heart failure. Exp Mol Med 48:e217. https://doi.org/10.1038/emm.2016.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Van Linthout S, Tschöpe C (2017) Inflammation—cause or consequence of heart failure or both? Curr Heart Fail Rep 14:251–265. https://doi.org/10.1007/s11897-017-0337-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kemp CD, Conte JV (2012) The pathophysiology of heart failure. Cardiovasc Pathol 21:365–371. https://doi.org/10.1016/j.carpath.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  67. Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15:387–407. https://doi.org/10.1038/s41569-018-0007-y

    Article  CAS  PubMed  Google Scholar 

  68. Fuller GG, Kim JK (2021) Compartmentalization and metabolic regulation of glycolysis. J Cell Sci 134:jcs258469. https://doi.org/10.1242/jcs.258469

    Article  CAS  PubMed  Google Scholar 

  69. Franzoso M, Zaglia T, Mongillo M (2016) Putting together the clues of the everlasting neuro-cardiac liaison. Biochem Biophys Acta 1863:1904–1915. https://doi.org/10.1016/j.bbamcr.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  70. Pius-Sadowska E, Machaliński B (2021) Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail 8:974–987. https://doi.org/10.1002/ehf2.13138

    Article  PubMed  PubMed Central  Google Scholar 

  71. Méloux A, Béjot Y, Rochette L et al (2020) Brain-heart interactions during ischemic processes: clinical and experimental evidences. Stroke 51:679–686. https://doi.org/10.1161/STROKEAHA.119.027732

    Article  PubMed  Google Scholar 

  72. Miller MA, Zachary JF (2017) Mechanisms and morphology of cellular injury, adaptation, and death. Pathologic basis of veterinary disease. Elsevier, Amsterdam, pp 2-43.e19

    Chapter  Google Scholar 

  73. Moore AS, Holzbaur EL (2018) Mitochondrial-cytoskeletal interactions: dynamic associations that facilitate network function and remodeling. Curr Opin Physiol 3:94–100. https://doi.org/10.1016/j.cophys.2018.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  74. Constantinides C, Mean R, Janssen BJ (2011) Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse. ILAR J 52:e21-31

    PubMed  Google Scholar 

  75. Janssen BJA, De Celle T, Debets JJM et al (2004) Effects of anesthetics on systemic hemodynamics in mice. Am J Physiol Heart Circ Physiol 287:H1618–H1624. https://doi.org/10.1152/ajpheart.01192.2003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge core support from Animal facility ANEXPLO, CREFRE US006 Rangueil, and in particular Xavier Sudre for his expertise. This work was funded by the Foundation de France Grant Number RAF18002BBA awarded to Dina N. Arvanitis. The proteomic investigations were funded by the National Sciences and Engineering Research Council of Canada (F. Beaudry discovery Grant No. RGPIN-2020-05228). Laboratory equipment was funded by the Canadian Foundation for Innovation (CFI) and the Fonds de Recherche du Québec (FRQ), the Government of Quebec (F. Beaudry CFI John R. Evans Leaders Grant No. 36706). F. Beaudry is the holder of the Canada Research Chair in metrology of bioactive molecule and target discovery (Grant No. CRC-2021-00160). This research was undertaken, partly, thanks to funding from the Canada Research Chairs Program. Ph.D. scholarships were awarded to J. Ben Salem from the Fonds de Recherche du Québec—Santé (Scholarship No. 302490) and from the Université de Montréal.

Funding

This work was supported by Foundation de France (Grant No. RAF18002BBA), National Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2020-05228), Canadian Foundation for Innovation (Grant No. 36706), Canada Research Chairs (Grant No. CRC-2021-00160).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dina N. Arvanitis or Francis Beaudry.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 849 kb)

Supplementary file2 (CSV 1879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, J.B., Iacovoni, J.S., Calise, D. et al. Proteomics Reveals Long-Term Alterations in Signaling and Metabolic Pathways Following Both Myocardial Infarction and Chemically Induced Denervation. Neurochem Res 47, 2416–2430 (2022). https://doi.org/10.1007/s11064-022-03636-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03636-7

Keywords

Navigation