Skip to main content
Log in

Effects of the Notch Signaling Pathway on Secondary Brain Changes Caused by Spinal Cord Injury in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) can cause secondary brain changes, leading to hypomyelination in the dorsolateral prefrontal cortex (dlPFC). Some studies have shown that notch signaling pathway activation can regulate oligodendrocyte maturation and myelination. The aim of this study was to investigate whether inhibition of the Notch signaling pathway can alleviate hypomyelination in the dlPFC caused by SCI. Moreover, we further investigated whether the changes in myelination in the dlPFC are associated with neuropathic pain following SCI. We established a mouse model of SCI and observed the changes in mechanical and thermal hyperalgesia. Western blotting and immunofluorescence were used to analyze the changes in myelination in the dlPFC. The results indicated the existence of a relationship between activation of the Notch signaling pathway and hypomyelination in the dlPFC and confirmed the existence of a relationship between hypomyelination in the dlPFC and decreases in mechanical and thermal hyperalgesia thresholds. In conclusion, these results suggested that the Notch signaling pathway is activated after SCI, leading to hypomyelination in the dlPFC, and that DAPT can inhibit the Notch signaling pathway and improve mechanical and thermal hyperalgesia thresholds. Our findings provide a new target for the treatment of neuropathic pain caused by SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data and materials are available from the corresponding author on reasonable request.

Abbreviations

SCI:

Spinal cord injury

dlPFC:

Dorsolateral prefrontal cortex

CNS:

Central nervous system

NICD:

Notch intracellular domain

BMS:

Basso mouse scale

PWT:

Paw withdrawal threshold

PWL:

Paw withdrawal latency

BSA:

Bovine serum albumin

Olig2:

Oligodendrocyte transcription factor 2

MBP:

Myelin basic protein

PS1:

Presenilin1

Aβ:

β-Amyloid peptide protein

APP:

Amyloid precursor protein

CNPase:

2′,3′-Cyclic nucleotide phosphohydrolase

PLP:

Proteolipid protein

References

  1. Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533

    Article  CAS  PubMed  Google Scholar 

  2. Griffiths I, Klugmann M, Anderson T et al (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280(5369):1610–1613

    Article  CAS  PubMed  Google Scholar 

  3. Dang TC, Ishii Y, Nguyen V et al (2019) Powerful homeostatic control of oligodendroglial lineage by PDGFRalpha in adult brain. Cell Rep 27(4):1073–1089

    Article  PubMed  CAS  Google Scholar 

  4. Young KM, Psachoulia K, Tripathi RB et al (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77(5):873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kang SH, Fukaya M, Yang JK et al (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valny M, Honsa P, Kriska J et al (2017) Multipotency and therapeutic potential of NG2 cells. Biochem Pharmacol 141:42–55

    Article  CAS  PubMed  Google Scholar 

  7. Ravanelli AM, Kearns CA, Powers RK et al (2018) Sequential specification of oligodendrocyte lineage cells by distinct levels of Hedgehog and Notch signaling. Dev Biol 444(2):93–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li C, Xie Z, Xing Z et al (2021) The Notch signaling pathway regulates differentiation of NG2 cells into oligodendrocytes in demyelinating diseases. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-021-01089-0

    Article  PubMed  Google Scholar 

  9. Zhang Y, Argaw AT, Gurfein BT et al (2009) Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci USA 106(45):19162–19167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang S, Sdrulla AD, Disibio G et al (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21(1):63–75

    Article  PubMed  Google Scholar 

  11. Genoud S, Lappe-Siefke C, Goebbels S et al (2002) Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol 158(4):709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dovey HF, John V, Anderson JP et al (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76(1):173–181

    Article  CAS  PubMed  Google Scholar 

  13. Evin G, Sernee MF, Masters CL (2006) Inhibition of gamma-secretase as a therapeutic intervention for Alzheimer’s disease: prospects, limitations and strategies. CNS Drugs 20(5):351–372

    Article  CAS  PubMed  Google Scholar 

  14. Geling A, Steiner H, Willem M et al (2002) A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3(7):688–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sueda R, Imayoshi I, Harima Y et al (2019) High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes Dev 33(9–10):511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi M, Liu Z, Lv Y et al (2011) Forced notch signaling inhibits commissural axon outgrowth in the developing chick central nerve system. PLoS ONE 6(1):e14570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    Article  CAS  PubMed  Google Scholar 

  18. Hains BC, Waxman SG (2006) Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 26(16):4308–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Y, Cao T, Ritzel RM et al (2020) Dementia, depression, and associated brain inflammatory mechanisms after spinal cord injury. Cells 9(6):1420

    Article  CAS  PubMed Central  Google Scholar 

  20. Yoon EJ, Kim YK, Shin HI et al (2013) Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res 1540:64–73

    Article  CAS  PubMed  Google Scholar 

  21. Gustin SM, Wrigley PJ, Siddall PJ et al (2010) Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb Cortex 20(6):1409–1419

    Article  CAS  PubMed  Google Scholar 

  22. Apkarian VA, Hashmi JA, Baliki MN (2011) Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 152(3 Suppl):S49–S64

    Article  PubMed  Google Scholar 

  23. Yang Q, Yan W, Li X et al (2012) Activation of canonical notch signaling pathway is involved in the ischemic tolerance induced by sevoflurane preconditioning in mice. Anesthesiology 117(5):996–1005

    Article  CAS  PubMed  Google Scholar 

  24. Xie Z, Huang S, Xie S et al (2021) Potential correlation between depression-like behavior and the mitogen-activated protein kinase pathway in the rat hippocampus following spinal cord injury. World Neurosurg 154:e29–e38

    Article  PubMed  Google Scholar 

  25. Huang P, Chen X, Hu X et al (2020) Experimentally induced sepsis causes extensive hypomyelination in the prefrontal cortex and hippocampus in neonatal rats. Neuromolecular Med 22(3):420–436

    Article  CAS  PubMed  Google Scholar 

  26. Aparicio E, Mathieu P, Pereira LM et al (2013) The Notch signaling pathway: its role in focal CNS demyelination and apotransferrin-induced remyelination. J Neurochem 127(6):819–836

    Article  CAS  PubMed  Google Scholar 

  27. Basso DM, Fisher LC, Anderson AJ et al (2006) Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23(5):635–659

    Article  PubMed  Google Scholar 

  28. Cai T, Morishima K, Takagi-Niidome S et al (2019) Conformational dynamics of transmembrane domain 3 of presenilin 1 Is associated with the trimming activity of gamma-secretase. J Neurosci 39(43):8600–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tian L, Guo R, Yue X et al (2012) Intranasal administration of nerve growth factor ameliorate beta-amyloid deposition after traumatic brain injury in rats. Brain Res 1440:47–55

    Article  CAS  PubMed  Google Scholar 

  30. Pajoohesh-Ganji A, Burns MP, Pal-Ghosh S et al (2014) Inhibition of amyloid precursor protein secretases reduces recovery after spinal cord injury. Brain Res 1560:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kobayashi S, Sasaki T, Katayama T et al (2010) Temporal-spatial expression of presenilin 1 and the production of amyloid-beta after acute spinal cord injury in adult rat. Neurochem Int 56(3):387–393

    Article  CAS  PubMed  Google Scholar 

  32. Du M, Tan Y, Liu G et al (2017) Effects of the Notch signalling pathway on hyperoxia-induced immature brain damage in newborn mice. Neurosci Lett 653:220–227

    Article  CAS  PubMed  Google Scholar 

  33. Siddall PJ, Mcclelland JM, Rutkowski SB et al (2003) A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 103(3):249–257

    Article  PubMed  Google Scholar 

  34. Dimou L, Gallo V (2015) NG2-glia and their functions in the central nervous system. Glia 63(8):1429–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Belachew S, Chittajallu R, Aguirre AA et al (2003) Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161(1):169–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ehebauer M, Hayward P, Arias AM (2006) Notch, a universal arbiter of cell fate decisions. Science 314(5804):1414–1415

    Article  CAS  PubMed  Google Scholar 

  37. Hammond TR, Gadea A, Dupree J et al (2014) Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron 81(3):588–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jurynczyk M, Selmaj K (2010) Notch: a new player in MS mechanisms. J Neuroimmunol 218(1–2):3–11

    Article  CAS  PubMed  Google Scholar 

  39. Cui XY, Hu QD, Tekaya M et al (2004) NB-3/Notch1 pathway via Deltex1 promotes neural progenitor cell differentiation into oligodendrocytes. J Biol Chem 279(24):25858–25865

    Article  CAS  PubMed  Google Scholar 

  40. Huang P, Zhou Q, Lin Q et al (2020) Complement C3a induces axonal hypomyelination in the periventricular white matter through activation of WNT/beta-catenin signal pathway in septic neonatal rats experimentally induced by lipopolysaccharide. Brain Pathol 30(3):495–514

    Article  CAS  PubMed  Google Scholar 

  41. Hu QD, Ang BT, Karsak M et al (2003) F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115(2):163–175

    Article  CAS  PubMed  Google Scholar 

  42. Duan H, Shen F, Li L et al (2021) Activation of the Notch signaling pathway in the anterior cingulate cortex is involved in the pathological process of neuropathic pain. Pain 162(1):263–274

    Article  CAS  PubMed  Google Scholar 

  43. Chen XH, Johnson VE, Uryu K et al (2009) A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol 19(2):214–223

    Article  PubMed  Google Scholar 

  44. Hilton BJ, Moulson AJ, Tetzlaff W (2017) Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neurosci Lett 652:3–10

    Article  CAS  PubMed  Google Scholar 

  45. Wu J, Zhao Z, Sabirzhanov B et al (2014) Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci 34(33):10989–11006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Basic Medicine Center of the Jiujiang University, China, for the access to equipment. The English language was corrected and certified by aje.com.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC; Grant No. 81860225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihua Li.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Consent for Publication

All authors gave consent for publication.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Huang, S., Zhou, W. et al. Effects of the Notch Signaling Pathway on Secondary Brain Changes Caused by Spinal Cord Injury in Mice. Neurochem Res 47, 1651–1663 (2022). https://doi.org/10.1007/s11064-022-03558-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03558-4

Keywords

Navigation