Skip to main content

Advertisement

Log in

Carbon Monoxide Protects Neural Stem Cells Against Iron Overload by Modulating the Crosstalk Between Nrf2 and NF-κB Signaling

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Although accumulating evidences have demonstrated pro-survival effects of CO against various insults, the precise mechanism explaining how neural stem cells (NSCs) are protected by CO also remains largely unknown. Here we report CO pro-survival effect on NSCs against iron overload was comparable to that obtained with pharmacological inhibitors of reactive oxygen species (ROS). Its pro-survival effect was accompanied by the inhibition of ROS and subsequent inhibition of NF-κB which is mediated through nuclear factor erythroid 2-related factor 2 (Nrf2), in that activation of Nrf2 by CO inhibited ROS via up-regulation of NQO-1 while down-regulation of Nrf2 reversed the pro-survival effect of CO both in vitro and in vivo. CO-mediated preconditioning results in Nrf2 up-regulation and NF-κB inhibition, suggesting that these two pathways act in an inverse manner to maintain redox homeostasis. Our findings revealed CO preconditioning as a promising treatment strategy to improve efficacy of NSCs transplantation after hemorrhagic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All associated data are available on reasonable request.

References

  1. Othman FA, Tan SC (2020) Preconditioning strategies to enhance neural stem cell-based therapy for ischemic stroke. Brain Sci 10(11):893

    Article  CAS  Google Scholar 

  2. Wakai T, Narasimhan P, Sakata H, Wang E, Yoshioka H, Kinouchi H, Chan PH (2015) Hypoxic preconditioning enhances neural stem cell transplantation therapy after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 36:2134

    Article  Google Scholar 

  3. Hicks AU, Lappalainen RS, Narkilahti S, Suuronen R, Corbett D, Sivenius J, Hovatta O, Jolkkonen J (2009) Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur J Neurosci 29(3):562–574

    Article  Google Scholar 

  4. Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, Yoshikawa H, Stern DM, Matsuyama T, Taguchi A (2009) Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells 27(9):2185–2195

    Article  Google Scholar 

  5. Yagi H, Tan J, Tuan RS (2013) Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. J Cell Biochem 114(5):1163–1173

    Article  CAS  Google Scholar 

  6. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    Article  CAS  Google Scholar 

  7. Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373(9675):1632–1644

    Article  Google Scholar 

  8. Lee J-Y, Keep RF, He Y, Sagher O, Hua Y, Xi G (2010) Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab 30(11):1793–1803

    Article  CAS  Google Scholar 

  9. Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L (2014) Neuroprotective gases-fantasy or reality for clinical use? Prog Neurobiol 115:210–245

    Article  CAS  Google Scholar 

  10. Wang B, Cao W, Biswal S, Doré S (2011) Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke 42(9):2605–2610

    Article  CAS  Google Scholar 

  11. Jung E, Koh SH, Yoo M, Choi YK (2020) Regenerative potential of carbon monoxide in adult neural circuits of the central nervous system. Int J Mol Sci 21(7):2273

    Article  CAS  Google Scholar 

  12. Choi YK, Maki T, Mandeville ET, Koh SH, Hayakawa K, Arai K, Kim YM, Whalen MJ, Xing C, Wang X, Kim KW, Lo EH (2016) Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. https://doi.org/10.1038/nm.4188

    Article  PubMed  PubMed Central  Google Scholar 

  13. Romao CC, Blattler WA, Seixas JD, Bernardes GJ (2012) Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev 41:3571–3583

    Article  CAS  Google Scholar 

  14. Xie Z, Han P, Cui Z, Wang B, Zhong Z, Sun Y, Yang G, Sun Q, Bian L (2016) Pretreatment of mouse neural stem cells with carbon monoxide-releasing molecule-2 interferes with NF-κB p65 signaling and suppresses iron overload-induced apoptosis. Cell Mol Neurobiol 36(8):1343–1351

    Article  CAS  Google Scholar 

  15. Lundqvist J, El Andaloussi-Lilja J, Svensson C, Gustafsson Dorfh H, Forsby A (2013) Optimisation of culture conditions for differentiation of C17.2 neural stem cells to be used for in vitro toxicity tests. Toxicol In Vitro 27:1565–1569

    Article  CAS  Google Scholar 

  16. Lee CC, Yang HL, Way TD, Kumar KJ, Juan YC, Cho HJ, Lin KY, Hsu LS, Chen SC, Hseu YC (2012) Inhibition of cell growth and induction of apoptosis by Antrodia camphorata in HER-2/neu-overexpressing breast cancer cells through the induction of ROS, depletion of HER-2/neu, and disruption of the PI3K/Akt signaling pathway. Evid Based Complement Alternat Med. https://doi.org/10.1155/2012/702857

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tang Y, Wang J, Lin X, Wang L, Shao B, Jin K, Wang Y, Yang GY (2014) Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis. J Cereb Blood Flow Metab 34(7):1138–1147

    Article  CAS  Google Scholar 

  18. Sakata H, Niizuma K, Yoshioka H, Kim GS, Jung JE, Katsu M, Narasimhan P, Maier CM, Nishiyama Y, Chan PH (2012) Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci 32:3462–3473

    Article  CAS  Google Scholar 

  19. Sucak GT, Yegin ZA, Ozkurt ZN, Aki SZ, Yağci M (2010) Iron overload: predictor of adverse outcome in hematopoietic stem cell transplantation. Transpl Proc 42:1841–1848

    Article  CAS  Google Scholar 

  20. Balogh E, Tolnai E, Nagy B Jr, Nagy B, Balla G, Balla J, Jeney V (2016) Iron overload inhibits osteogenic commitment and differentiation of mesenchymal stem cells via the induction of ferritin. Biochim Biophys Acta 1862(9):1640–1649

    Article  CAS  Google Scholar 

  21. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866

    Article  CAS  Google Scholar 

  22. Qing Y, Liang Y, Du Q et al (2013) Apoptosis induced by trimethyltin chloride in human neuroblastoma cells SY5Y is regulated by a balance and cross-talk between NF-kappaB and MAPKs signaling pathways. Arch Toxicol 87:1273–1285

    Article  CAS  Google Scholar 

  23. Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318

    Article  CAS  Google Scholar 

  24. Li SW, Liu CM, Guo J, Marcondes AM, Deeg J, Li X, Guan F (2016) Iron overload induced by ferric ammonium citrate triggers reactive oxygen species-mediated apoptosis via both extrinsic and intrinsic pathways in human hepatic cells. Hum Exp Toxicol 35(6):598–607

    Article  CAS  Google Scholar 

  25. Rodríguez Diez G, Sánchez Campos S, Giusto NM, Salvador GA (2013) Specific roles for Group V secretory PLA2 in retinal iron-induced oxidative stress. Implications for age-related macular degeneration. Exp Eye Res 113:172–181

    Article  Google Scholar 

  26. Jang JH, Surh YJ (2005) Beta-amyloid-induced apoptosis is associated with cyclooxygenase-2 up-regulation via the mitogen activated protein kinase-NF-kappaB signaling pathway. Free Radic Biol Med 38(12):1604–1613

    Article  CAS  Google Scholar 

  27. Zhu C, Liu Z, Gui L, Yao W, Qian W, Zhang C (2008) Mutated IkappaBalpha represses proliferation of immortalized neural progenitor cells and prevents their apoptosis after oxygen-glucose deprivation. Brain Res 1244:24–31

    Article  CAS  Google Scholar 

  28. Kutuk O, Basaga H (2003) Aspirin prevents apoptosis and NF-kappaB activation induced by H2O2 in Hela cells. Free Radic Res 37(12):1267–1276

    Article  CAS  Google Scholar 

  29. Shao A, Zhou Y, Yao Y, Zhang W, Zhang J, Deng Y (2019) The role and therapeutic potential of heat shock proteins in haemorrhagic stroke. J Cell Mol Med 23:5846–5858

    Article  CAS  Google Scholar 

  30. Sharp FR, Zhan X, Liu DZ (2013) Heat shock proteins in the brain: role of Hsp70, Hsp27, and HO-1 (Hsp32) and their therapeutic potential. Transl Stroke Res 4:685–692

    Article  CAS  Google Scholar 

  31. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2- ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  Google Scholar 

  32. Slocum S, Kensler T (2011) Nrf2: control of sensitivity to carcinogens. Arch Toxicol 85:273–284

    Article  CAS  Google Scholar 

  33. Doré S (2015) Neuroprotective effort of carbon monoxide and Nrf2 in cerebral ischemia. Springerplus 4(Suppl 1):L44

    Article  Google Scholar 

  34. Chi PL, Lin CC, Chen YW, Hsiao LD, Yang CM (2015) CO induces Nrf2-dependent heme oxygenase-1 transcription by cooperating with Sp1 and c-Jun in rat brain astrocytes. Mol Neurobiol 52(1):277–292

    Article  CAS  Google Scholar 

  35. Johansson K, Cebula M, Rengby O, Dreij K, Carlström KE, Sigmundsson K, Piehl F, Arnér ES (2015) Cross talk in HEK293 cells between Nrf2, HIF, and NF-jB activities upon challenges with redox therapeutics characterized with single-cell resolution. Antioxid Redox Signal

  36. Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S et al (2008) Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489

    Article  CAS  Google Scholar 

  37. Jin W, Zhu L, Guan Q, Chen G, Wang QF, Yin HX, Hang CH, Shi JX, Wang HD (2008) Influence of Nrf2 genotype on pulmonary NF-kappaB activity and inflammatory response after traumatic brain injury. Ann Clin Lab Sci 38:221–227

    CAS  PubMed  Google Scholar 

  38. Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43:621–626

    Article  CAS  Google Scholar 

  39. Rushworth SA, MacEwan DJ (2011) The role of Nrf2 and cytoprotection in regulating chemotherapy resistance of human leukemia cells. Cancers 3:1605–1621

    Article  CAS  Google Scholar 

  40. Paur I, Balstad TR, Kolberg M, Pedersen MK, Austenaa LM, Jacobs DR, Blomhoff R (2010) Extract of oregano, coffee, thyme, clove, and walnuts inhibits NF-κB in monocytes and in transgenic reporter mice. Cancer Prev Res 3:653–663

    Article  Google Scholar 

  41. Mukherjee S, Ghosh S, Choudhury S, Adhikary A, Manna K, Dey S, Sa G, Das T, Chattopadhyay S (2013) Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-κB pathways. J Nutr Biochem 24(12):2040–2050

    Article  CAS  Google Scholar 

  42. Minellia A, Grottelli S, Mierla A, Pinnen F, Cacciatore I, Bellezza I (2012) Cyclo(His-Pro) exerts anti-inflammatory effects by modulating NF-κB and Nrf2 signaling. Int J Biochem Cell Biol 44:525–535

    Article  Google Scholar 

  43. Yabluchanskiy A, Sawle P, Homer-Vanniasinkam S et al (2012) CORM-3, a carbon monoxide-releasing molecule, alters the inflammatory response and reduces brain damage in a rat model of hemorrhagic stroke. Crit Care Med 40:544–552

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Nanjing Medical University Foundation (Grant No. 2017NJMUD114), Wuxi Municipal Bureau Foundation (Grant No. N20192022) and Top Talent Support Program for young and middle-aged people of Wuxi Health Committee (Grant No. HB2020036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Zhengxing.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical Approval

The study was approved by the Ethical committee of The Affiliated Wuxi No. 2 Peoples' Hospital of Nanjing Medical University, Wuxi, China.

Consent to Participate and Consent for Publication

All authors consent to participate and consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhengxing, X., Aiying, H., Zongqiang, Z. et al. Carbon Monoxide Protects Neural Stem Cells Against Iron Overload by Modulating the Crosstalk Between Nrf2 and NF-κB Signaling. Neurochem Res 47, 1383–1394 (2022). https://doi.org/10.1007/s11064-022-03537-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03537-9

Keywords

Navigation