Skip to main content

Advertisement

Log in

The Effect of α7nAChR Signaling on T Cells and Macrophages and Their Clinical Implication in the Treatment of Rheumatic Diseases

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is one of the most common autoimmune disease and until now, the etiology and pathogenesis of RA is not fully understood, although dysregulation of immune cells is one of the leading cause of RA-related pathological changes. Based on current understanding, the priority of anti-rheumatic treatments is to restore immune homeostasis. There are several anti-rheumatic drugs with immunomodulatory effects available nowadays, but most of them have obvious safety or efficacy shortcomings. Therefore, the development of novel anti-rheumatic drugs is still in urgently needed. Cholinergic anti-inflammatory pathway (CAP) has been identified as an important aspect of the so-called neuro-immune regulation feedback, and the interaction between acetylcholine and alpha 7 nicotinic acetylcholine receptor (α7nAChR) serves as the foundation for this signaling. Consistent to its immunomodulatory functions, α7nAChR is extensively expressed by immune cells. Accordingly, CAP activation greatly affects the differentiation and function of α7nAChR-expressing immune cells. As a result, targeting α7nAChR will bring profound therapeutic impacts on the treatment of inflammatory diseases like RA. RA is widely recognized as a CD4+ T cells-driven disease. As a major component of innate immunity, macrophages also significantly contribute to RA-related immune abnormalities. Theoretically, manipulation of CAP in immune cells is a feasible way to treat RA. In this review, we summarized the roles of different T cells and macrophages subsets in the occurrence and progression of RA, and highlighted the immune consequences of CAP activation in these cells under RA circumstances. The in-depth discussion is supposed to inspire the development of novel cell-specific CAP-targeting anti-rheumatic regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Scott DL, Wolfe F, Huizinga TW (2010) Rheumatoid arthritis. Lancet 376(9746):1094–1108

    Article  PubMed  Google Scholar 

  2. Cranney A, Goldstein R, Pham B, Newkirk MM, Karsh J (1999) A measure of limited joint motion and deformity correlates with HLA-DRB1 and DQB1 alleles in patients with rheumatoid arthritis. Ann Rheum Dis 58(11):703–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Yoshida S, Graham RR, Manoharan A, Ortmann W, Bhangale T, Denny JC, Carroll RJ, Eyler AE, Greenberg JD, Kremer JM, Pappas DA, Jiang L, Yin J, Ye L, Su DF, Yang J, Xie G, Keystone E, Westra HJ, Esko T, Metspalu A, Zhou X, Gupta N, Mirel D, Stahl EA, Diogo D, Cui J, Liao K, Guo MH, Myouzen K, Kawaguchi T, Coenen MJ, van Riel PL, van de Laar MA, Guchelaar HJ, Huizinga TW, Dieudé P, Mariette X, Bridges SL Jr, Zhernakova A, Toes RE, Tak PP, Miceli-Richard C, Bang SY, Lee HS, Martin J, Gonzalez-Gay MA, Rodriguez-Rodriguez L, Rantapää-Dahlqvist S, Arlestig L, Choi HK, Kamatani Y, Galan P, Lathrop M, Bowes S, Barton J, de Vries A, Moreland N, Criswell LW, Karlson LA, Taniguchi EW, Yamada A, Kubo R, Liu M, Bae JS, Worthington SC, Padyukov J, Klareskog L, Gregersen L, Raychaudhuri PK, Stranger S, De Jager BE, Franke PL, Visscher L, Brown PM, Yamanaka MA, Mimori H, Takahashi T, Xu A, Behrens H, Siminovitch TW, Momohara KA, Matsuda S, Yamamoto F, Plenge K (2014) RM Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506(7488):376-381

  4. Tengstrand B, Carlström K, Felländer-Tsai L, Hafström I (2003) Abnormal levels of serum dehydroepiandrosterone, estrone, and estradiol in men with rheumatoid arthritis: high correlation between serum estradiol and current degree of inflammation. J Rheumatol 30(11):2338–2343

    CAS  PubMed  Google Scholar 

  5. Goemaere S, Ackerman C, Goethals K, De Keyser F, Van der Straeten C, Verbruggen G, Mielants H, Veys EM (1990) Onset of symptoms of rheumatoid arthritis in relation to age, sex and menopausal transition. J Rheumatol 17(12):1620–1622

    CAS  PubMed  Google Scholar 

  6. Engdahl C, Bondt A, Harre U, Raufer J, Pfeifle R, Camponeschi A, Wuhrer M, Seeling M, Mårtensson IL, Nimmerjahn F, Krönke G, Scherer HU, Forsblad-d’Elia H, Schett G (2018) Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res Ther 20(1):84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pope RM, Pahlavani MA, LaCour E, Sambol S, Desai BV (1989) Antigenic specificity of rheumatoid synovial fluid lymphocytes. Arthritis Rheum 32(11):1371–1380

    Article  CAS  PubMed  Google Scholar 

  8. Saal JG, Krimmel M, Steidle M, Gerneth F, Wagner S, Fritz P, Koch S, Zacher J, Sell S, Einsele H, Müller CA (1992) Synovial Epstein-Barr virus infection increases the risk of rheumatoid arthritis in individuals with the shared HLA-DR4 epitope. Arthritis Rheum 42(7):1485–1496

    Article  Google Scholar 

  9. Oğuz F, Akdeniz C, Unüvar E, Küçükbasmaci O, Sidal M (2002) Parvovirus B19 in the acute arthropathies and juvenile rheumatoid arthritis. J Paediatr Child Health 38(4):358–362

    Article  PubMed  Google Scholar 

  10. Lin YJ, Anzaghe M, Schülke S (2020) Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells 9(4):880

    Article  CAS  PubMed Central  Google Scholar 

  11. Fekete A, Soos L, Szekanecz Z, Szabo Z, Szodoray P, Barath S, Lakos G (2007) Disturbances in B- and T-cell homeostasis in rheumatoid arthritis: suggested relationships with antigen-driven immune responses. J Autoimmun 29(2–3):154–163

    Article  CAS  PubMed  Google Scholar 

  12. Sakyi SA, Buckman TA, Antwi-Berko D, Yeboah-Mensah K, Dey D, Owiredu EW, Amoani B, Mantey R (2020) Intracytoplasmic expression of IL-6 and IL-17A in circulating CD4+ T cells are strongly associated with and predict disease activity in rheumatoid arthritis: a case–control study in Ghana. Int J Rheumatol 2020:2808413

  13. Burbano C, Villar-Vesga J, Vásquez G, Muñoz-Vahos C, Rojas M, Castaño D (2019) Proinflammatory differentiation of macrophages through microparticles that form immune complexes leads to T- and B-cell activation in systemic autoimmune diseases. Front Immunol 10:2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guidelli GM, Barskova T, Brizi MG, Lepri G, Parma A, Talarico R, Cantarini L, Frediani B (2015) One year in review: novelties in the treatment of rheumatoid arthritis. Clin Exp Rheumatol 33(1):102–108

    PubMed  Google Scholar 

  15. Tu J, Huang W, Zhang W, Mei J, Zhu C (2021) A tale of two immune cells in rheumatoid arthritis: the crosstalk between macrophages and T cells in the synovium. Front Immunol 12:655477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abbasi M, Mousavi MJ, Jamalzehi S, Alimohammadi R, Bezvan MH, Mohammadi H, Aslani S (2019) Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol 234(7):10018–10031

    Article  CAS  PubMed  Google Scholar 

  17. McAllen RM, Cook AD, Khiew HW, Martelli D, Hamilton JA (2015) The interface between cholinergic pathways and the immune system and its relevance to arthritis. Arthritis Res Ther 17(1):87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K (2017) Expression and function of the cholinergic system in immune cells. Front Immunol 8:1085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wu YJ, Wang L, Ji CF, Gu SF, Yin Q, Zuo J (2021) The role of α7nAChR-mediated cholinergic anti-inflammatory pathway in immune cells. Inflammation 44:821–834

    Article  CAS  PubMed  Google Scholar 

  20. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    Article  CAS  PubMed  Google Scholar 

  21. Hoover DB (2017) Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther 179:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Hao H, Gao Y, Wang Z, Lu W, Liu J (2019) Expression and localization analyses of the cholinergic anti-inflammatory pathway and α7nAchR in different tissues of rats with rheumatoid arthritis. Acta Histochem 121(6):742–749

    Article  CAS  PubMed  Google Scholar 

  24. Mashimo M, Takeshima S, Okuyama H, Matsurida A, Murase M, Ono S, Kawashima K, Fujii T (2020) α7 nAChRs expressed on antigen presenting cells are insensitive to the conventional antagonists α-bungarotoxin and methyllycaconitine. Int Immunopharmacol 81:106276

    Article  CAS  PubMed  Google Scholar 

  25. Okuda T, Haga T (2003) High-affinity choline transporter. Neurochem Res 28(3–4):483–488

    Article  CAS  PubMed  Google Scholar 

  26. de Castro BM, De Jaeger X, Martins-Silva C, Lima RD, Amaral E, Menezes C, Lima P, Neves CM, Pires RG, Gould TW, Welch I, Kushmerick C, Guatimosim C, Izquierdo I, Cammarota M, Rylett RJ, Gomez MV, Caron MG, Oppenheim RW, Prado MA, Prado VF (2009) The vesicular acetylcholine transporter is required for neuromuscular development and function. Mol Cell Biol 29(19):5238–5250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ray B, Bailey JA, Simon JR, Lahiri DK (2012) High-affinity choline uptake (HACU) and choline acetyltransferase (ChAT) activity in neuronal cultures for mechanistic and drug discovery studies. Curr Protoc Neurosci 7(7):23–27

    PubMed  Google Scholar 

  28. Papke RL, Porter Papke JK (2002) Comparative pharmacology of rat and human alpha7 nAChR conducted with net charge analysis. Br J Pharmacol 137(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kawashima K, Oohata H, Fujimoto K, Suzuki T (1987) Plasma concentration of acetylcholine in young women. Neurosci Lett 80(3):339–342

    Article  CAS  PubMed  Google Scholar 

  30. Fujii T, Yamada S, Yamaguchi N, Fujimoto K, Suzuki T, Kawashima K (1995) Species differences in the concentration of acetylcholine, a neurotransmitter, in whole blood and plasma. Neurosci Lett 201(3):207–210

    Article  CAS  PubMed  Google Scholar 

  31. Fujii T, Mori Y, Tominaga T, Hayasaka I, Kawashima K (1997) Maintenance of constant blood acetylcholine content before and after feeding in young chimpanzees. Neurosci Lett 227(1):21–24

    Article  CAS  PubMed  Google Scholar 

  32. Yamada S, Fujii T, Kawashima K (1997) Oral administration of KW-5092, a novel gastroprokinetic agent with acetylcholinesterase inhibitory and acetylcholine release enhancing activities, causes a dose-dependent increase in the blood acetylcholine content of beagle dogs. Neurosci Lett 225(1):25–28

    Article  CAS  PubMed  Google Scholar 

  33. Kawashima K, Fujii T, Moriwaki Y, Misawa H, Horiguchi K (2015) Non-neuronal cholinergic system in regulation of immune function with a focus on α7 nAChRs. Int Immunopharmacol 29(1):127–134

    Article  CAS  PubMed  Google Scholar 

  34. Kawashima K, Fujii T (2004) Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front Biosci 9:2063–2085

    Article  CAS  PubMed  Google Scholar 

  35. Báez-Pagán CA, Delgado-Vélez M, Lasalde-Dominicci JA (2015) Activation of the macrophage α7 nicotinic acetylcholine receptor and control of inflammation. J Neuroimmune Pharmacol 10(3):468–476

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grassi F, Fucile S (2020) Calcium influx through muscle nAChR-channels: one route, multiple roles. Neuroscience 439:117–124

    Article  CAS  PubMed  Google Scholar 

  37. Sala F, Nistri A, Criado M (2008) Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiol (Oxf) 192(2):203–212

    Article  CAS  Google Scholar 

  38. Adams DJ, Nutter TJ (1992) Calcium permeability and modulation of nicotinic acetylcholine receptor-channels in rat parasympathetic neurons. J Physiol Paris 86(1–3):67–76

    Article  CAS  PubMed  Google Scholar 

  39. Oshikawa J, Toya Y, Fujita T, Egawa M, Kawabe J, Umemura S, Ishikawa Y (2003) Nicotinic acetylcholine receptor alpha 7 regulates cAMP signal within lipid rafts. Am J Physiol Cell Physiol 285(3):C567–C574

    Article  CAS  PubMed  Google Scholar 

  40. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta M, Ashok M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L (2006) Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203(7):1623–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S, Klibanov AL, Kalantari K, Rosin DL, Okusa MD (2013) Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol 24(9):1451–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ji H, Rabbi MF, Labis B, Pavlov VA, Tracey KJ, Ghia JE (2014) Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol 7(2):335–347

    Article  CAS  PubMed  Google Scholar 

  43. Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, Yeboah MM, Chatterjee PK, Tracey KJ, Metz CN (2009) Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol 183(1):552–559

    Article  CAS  PubMed  Google Scholar 

  44. Huston JM, Wang H, Ochani M, Ochani K, Rosas-Ballina M, Gallowitsch-Puerta M, Ashok M, Yang L, Tracey KJ, Yang H (2008) Splenectomy protects against sepsis lethality and reduces serum HMGB1 levels. J Immunol 181(5):3535–3539

    Article  CAS  PubMed  Google Scholar 

  45. van Maanen MA, Lebre MC, van der Poll T, LaRosa GJ, Elbaum D, Vervoordeldonk MJ, Tak PP (2009) Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum 60(1):114–122

    Article  PubMed  CAS  Google Scholar 

  46. Levine YA, Koopman FA, Faltys M, Caravaca A, Bendele A, Zitnik R, Vervoordeldonk MJ, Tak PP (2014) Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS ONE 9(8):e104530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Peng C, Shi QP, Liu JY, Lv YJ, Li J, Yi L, Bai SS, Liu L, Wang PX, Zhou H, Huang KE, Dong Y (2019) Alpha7 nAChR expression is correlated with arthritis development and inhibited by sinomenine in adjuvant-induced arthritic rats. Evid Based Complement Alternat Med 2019:3759304

  48. van Maanen MA, Stoof SP, Larosa GJ, Vervoordeldonk MJ, Tak PP (2010) Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor α7 subunit gene knockout mice. Ann Rheum Dis 69(9):1717–1723

    Article  PubMed  Google Scholar 

  49. Fujii YX, Fujigaya H, Moriwaki Y, Misawa H, Kasahara T, Grando SA, Kawashima K (2007) Enhanced serum antigen-specific IgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. J Neuroimmunol 189(1–2):69–74

    Article  CAS  PubMed  Google Scholar 

  50. Koopman FA, Schuurman PR, Vervoordeldonk MJ, Tak PP (2014) Vagus nerve stimulation: a new bioelectronics approach to treat rheumatoid arthritis? Best Pract Res Clin Rheumatol 28(4):625–635

    Article  CAS  PubMed  Google Scholar 

  51. Westman M, Saha S, Morshed M, Lampa J (2010) Lack of acetylcholine nicotine alpha 7 receptor suppresses development of collagen-induced arthritis and adaptive immunity. Clin Exp Immunol 162(1):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9(12):1347–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346

    Article  CAS  PubMed  Google Scholar 

  54. Gerli R, Bistoni O, Russano A, Fiorucci S, Borgato L, Cesarotti ME, Lunardi C (2002) In vivo activated T cells in rheumatoid synovitis. Analysis of Th1- and Th2-type cytokine production at clonal level in different stages of disease. Clin Exp Immunol 129(3):549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miltenburg AM, van Laar JM, de Kuiper R, Daha MR, Breedveld FC (1992) T cells cloned from human rheumatoid synovial membrane functionally represent the Th1 subset. Scand J Immunol 35(5):603–610

    Article  CAS  PubMed  Google Scholar 

  56. Petrovic-Rackov L, Pejnovic N (2006) Clinical significance of IL-18, IL-15, IL-12 and TNF-alpha measurement in rheumatoid arthritis. Clin Rheumatol 25(4):448–452

    Article  PubMed  Google Scholar 

  57. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Patel DD, Zachariah JP, Whichard LP (2001) CXCR3 and CCR5 ligands in rheumatoid arthritis synovium. Clin Immunol 98(1):39–45

    Article  CAS  PubMed  Google Scholar 

  59. Aldridge J, Ekwall AH, Mark L, Bergström B, Andersson K, Gjertsson I, Lundell AC, Rudin A (2020) T helper cells in synovial fluid of patients with rheumatoid arthritis primarily have a Th1 and a CXCR3+Th2 phenotype. Arthritis Res Ther 22(1):245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nizri E, Irony-Tur-Sinai M, Lory O, Orr-Urtreger A, Lavi E, Brenner T (2009) Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. J Immunol 183(10):6681–6688

    Article  CAS  PubMed  Google Scholar 

  61. Wu S, Zhao H, Luo H, Xiao X, Zhang H, Li T, Zuo X (2014) GTS-21, an α7-nicotinic acetylcholine receptor agonist, modulates Th1 differentiation in CD4+ T cells from patients with rheumatoid arthritis. Exp Ther Med 8(2):557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu S, Luo H, Xiao X, Zhang H, Li T, Zuo X (2014) Attenuation of collagen induced arthritis via suppression on Th17 response by activating cholinergic anti-inflammatory pathway with nicotine. Eur J Pharmacol 735:97–104

    Article  CAS  PubMed  Google Scholar 

  63. Wu S, Zhou Y, Liu S, Zhang H, Luo H, Zuo X, Li T (2018) Regulatory effect of nicotine on the differentiation of Th1, Th2 and Th17 lymphocyte subsets in patients with rheumatoid arthritis. Eur J Pharmacol 831:38–45

    Article  CAS  PubMed  Google Scholar 

  64. Mashimo M, Komori M, Matsui YY, Murase MX, Fujii T, Takeshima S, Okuyama H, Ono S, Moriwaki Y, Misawa H, Kawashima K (2019) Distinct roles of α7 nAChRs in antigen-presenting cells and CD4+ T cells in the regulation of T cell differentiation. Front Immunol 10:1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440

    Article  CAS  PubMed  Google Scholar 

  66. Kawashima M, Miossec P (2005) Effect of treatment of rheumatoid arthritis with infliximab on IFN gamma, IL4, T-bet, and GATA-3 expression: link with improvement of systemic inflammation and disease activity. Ann Rheum Dis 64(3):415–418

    Article  CAS  PubMed  Google Scholar 

  67. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132

    Article  CAS  PubMed  Google Scholar 

  68. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pène J, Chevalier S, Preisser L, Vénéreau E, Guilleux MH, Ghannam S, Molès JP, Danger Y, Ravon E, Lesaux S, Yssel H, Gascan H (2008) Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J Immunol 180(11):7423–7430

    Article  PubMed  Google Scholar 

  70. Cascão R, Moura RA, Perpétuo I, Canhão H, Vieira-Sousa E, Mourão AF, Rodrigues AM, Polido-Pereira J, Queiroz MV, Rosário HS, Souto-Carneiro MM, Graca L, Fonseca JE (2010) Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis. Arthritis Res Ther 12(5):R196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S, Blanchard D, Gaillard C, Das Mahapatra B, Rouvier E, Golstein P, Banchereau J, Lebecque S (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183(6):2593–2603

    Article  CAS  PubMed  Google Scholar 

  72. van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, Dolhain RJ, Lubberts E (2011) Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum 63(1):73–83

    Article  PubMed  CAS  Google Scholar 

  73. Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupé P, Barillot E, Soumelis V (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9(6):650–657

    Article  CAS  PubMed  Google Scholar 

  74. Liu Z, Han B, Li P, Wang Z, Fan Q (2014) Activation of α7nAChR by nicotine reduced the Th17 response in CD4(+)T lymphocytes. Immunol Invest 43(7):667–674

    Article  PubMed  CAS  Google Scholar 

  75. Chen K, Sun Y, Dong W, Zhang T, Zhou N, Yu W, Diao Y, Guo S, Tian Y (2018) Activated Α7nachr improves postoperative cognitive dysfunction and intestinal injury induced by cardiopulmonary bypass in rats: inhibition of the proinflammatory response through the Th17 immune response. Cell Physiol Biochem 46(3):1175–1188

    Article  CAS  PubMed  Google Scholar 

  76. Galitovskiy V, Qian J, Chernyavsky AI, Marchenko S, Gindi V, Edwards RA, Grando SA (2011) Cytokine-induced alterations of α7 nicotinic receptor in colonic CD4 T cells mediate dichotomous response to nicotine in murine models of Th1/Th17- versus Th2-mediated colitis. J Immunol 187(5):2677–2687

    Article  CAS  PubMed  Google Scholar 

  77. Yin Q, Wu YJ, Pan S, Wang DD, Tao MQ, Pei WY, Zuo J (2020) Activation of cholinergic anti-inflammatory pathway in peripheral immune cells involved in therapeutic actions of α-mangostin on collagen-induced arthritis in rats. Drug Des Devel Ther 14:1983–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tao JH, Cheng M, Tang JP, Liu Q, Pan F, Li XP (2017) Foxp3, regulatory T cell, and autoimmune diseases. Inflammation 40(1):328–339

    Article  CAS  PubMed  Google Scholar 

  79. Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40(7):1830–1835

    Article  CAS  PubMed  Google Scholar 

  80. Fischer L, Herkner C, Kitte R, Dohnke S, Riewaldt J, Kretschmer K, Garbe AI (2019) Foxp3+ regulatory T cells in bone and hematopoietic homeostasis. Front Endocrinol (Lausanne) 10:578

    Article  Google Scholar 

  81. Komatsu N, Takayanagi H (2015) Regulatory T cells in arthritis. Prog Mol Biol Transl Sci 136:207–215

    Article  PubMed  Google Scholar 

  82. Li S, Wang H, Wu H, Chang X (2020) Therapeutic effect of exogenous regulatory T cells on collagen-induced arthritis and rheumatoid arthritis. Cell Transplant 29:963689720954134

    Article  PubMed  Google Scholar 

  83. Kawashiri SY, Kawakami A, Okada A, Koga T, Tamai M, Yamasaki S, Nakamura H, Origuchi T, Ida H, Eguchi K (2011) CD4+CD25(high)CD127(low/-) Treg cell frequency from peripheral blood correlates with disease activity in patients with rheumatoid arthritis. J Rheumatol 38(12):2517–2521

    Article  CAS  PubMed  Google Scholar 

  84. Wang DW, Zhou RB, Yao YM, Zhu XM, Yin YM, Zhao GJ, Dong N, Sheng ZY (2010) Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. J Pharmacol Exp Ther 335(3):553–561

    Article  CAS  PubMed  Google Scholar 

  85. Gowayed MA, Rothe K, Rossol M, Attia AS, Wagner U, Baerwald C, El-Abhar HS, Refaat R (2019) The role of α7nAChR in controlling the anti-inflammatory/anti-arthritic action of galantamine. Biochem Pharmacol 170:113665

    Article  CAS  PubMed  Google Scholar 

  86. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, Cianfarani F, Odorisio T, Traidl-Hoffmann C, Behrendt H, Durham SR, Schmidt-Weber CB, Cavani A (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 119(12):3573–3585

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Miyazaki Y, Nakayamada S, Kubo S, Nakano K, Iwata S, Miyagawa I, Ma X, Trimova G, Sakata K, Tanaka Y (2018) Th22 cells promote osteoclast differentiation via production of IL-22 in rheumatoid arthritis. Front Immunol 9:2901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F (2014) T helper cells plasticity in inflammation. Cytometry A 85(1):36–42

    Article  PubMed  CAS  Google Scholar 

  89. Monasterio G, Castillo F, Rojas L, Cafferata EA, Alvarez C, Carvajal P, Núñez C, Flores G, Díaz W, Vernal R (2018) Th1/Th17/Th22 immune response and their association with joint pain, imagenological bone loss, RANKL expression and osteoclast activity in temporomandibular joint osteoarthritis: a preliminary report. J Oral Rehabil 45(8):589–597

    Article  CAS  PubMed  Google Scholar 

  90. Geboes L, Dumoutier L, Kelchtermans H, Schurgers E, Mitera T, Renauld JC, Matthys P (2009) Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheum 60(2):390–395

    Article  CAS  PubMed  Google Scholar 

  91. Moriwaki Y, Takada K, Nagasaki T, Kubo N, Ishii T, Kose K, Kageyama T, Tsuji S, Kawashima K, Misawa H (2015) IL-22/STAT3-induced increases in SLURP1 expression within psoriatic lesions exerts antimicrobial effects against Staphylococcus aureus. PLoS ONE 10(10):e0140750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rana AK, Li Y, Dang Q, Yang F (2018) Monocytes in rheumatoid arthritis: Circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int Immunopharmacol 65:348–359

    Article  CAS  PubMed  Google Scholar 

  93. Rajasekhar M, Olsson AM, Steel KJ, Georgouli M, Ranasinghe U, Brender Read C, Frederiksen KS, Taams LS (2017) MicroRNA-155 contributes to enhanced resistance to apoptosis in monocytes from patients with rheumatoid arthritis. J Autoimmun 79:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yunna C, Mengru H, Lei W, Weidong C (2020) Macrophage M1/M2 polarization. Eur J Pharmacol 877:173090

    Article  PubMed  CAS  Google Scholar 

  95. Lin YH, Wang YH, Peng YJ, Liu FC, Lin GJ, Huang SH, Sytwu HK, Cheng CP (2020) Interleukin 26 skews macrophage polarization towards M1 phenotype by activating cJUN and the NF-κB pathway. Cells 9(4):938

    Article  CAS  PubMed Central  Google Scholar 

  96. Zhang X, Feng T, Zhou X, Sullivan PM, Hu F, Lou Y, Yu J, Feng J, Liu H, Chen Y (2021) Inactivation of TMEM106A promotes lipopolysaccharide-induced inflammation via the MAPK and NF-κB signaling pathways in macrophages. Clin Exp Immunol 203(1):125–136

    Article  CAS  PubMed  Google Scholar 

  97. Yang X, Chang Y, Wei W (2016) Endothelial dysfunction and inflammation: immunity in rheumatoid arthritis. Mediators Inflamm 2016:6813016

  98. Ruth JH, Haas CS, Park CC, Amin MA, Martinez RJ, Haines GK 3rd, Shahrara S, Campbell PL, Koch AE (2006) CXCL16-mediated cell recruitment to rheumatoid arthritis synovial tissue and murine lymph nodes is dependent upon the MAPK pathway. Arthritis Rheum 54(3):765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Choi YS, Kang EH, Lee EY, Gong HS, Kang HS, Shin K, Lee EB, Song YW, Lee YJ (2013) Joint-protective effects of compound K, a major ginsenoside metabolite, in rheumatoid arthritis: in vitro evidence. Rheumatol Int 33(8):1981–1990

    Article  CAS  PubMed  Google Scholar 

  100. Yi L, Luo JF, Xie BB, Liu JX, Wang JY, Liu L, Wang PX, Zhou H, Dong Y (2015) α7 nicotinic acetylcholine receptor is a novel mediator of sinomenine anti-inflammation effect in macrophages stimulated by lipopolysaccharide. Shock 44(2):188–195

    Article  CAS  PubMed  Google Scholar 

  101. Zhu RL, Zhi YK, Yi L, Luo JF, Li J, Bai SS, Liu L, Wang PX, Zhou H, Dong Y (2019) Sinomenine regulates CD14/TLR4, JAK2/STAT3 pathway and calcium signal via α7nAChR to inhibit inflammation in LPS-stimulated macrophages. Immunopharmacol Immunotoxicol 41(1):172–177

    Article  CAS  PubMed  Google Scholar 

  102. Pinheiro NM, Santana FP, Almeida RR, Guerreiro M, Martins MA, Caperuto LC, Câmara NO, Wensing LA, Prado VF, Tibério IF, Prado MA, Prado CM (2017) Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. FASEB J 31(1):320–332

    Article  PubMed  Google Scholar 

  103. Wang J, Li R, Peng Z, Zhou W, Hu B, Rao X, Yang X, Li J (2019) GTS-21 reduces inflammation in acute lung injury by regulating M1 polarization and function of alveolar macrophages. Shock 51(3):389–400

    Article  CAS  PubMed  Google Scholar 

  104. Kaur I, Behl T, Bungau S, Kumar A, Mehta V, Setia D, Uddin MS, Zengin G, Aleya L, Arora S (2020) Exploring the therapeutic promise of targeting HMGB1 in rheumatoid arthritis. Life Sci 258:118164

    Article  CAS  PubMed  Google Scholar 

  105. Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Wang H, Metz C, Miller EJ, Tracey KJ, Ulloa L (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10(11):1216–1221

    Article  CAS  PubMed  Google Scholar 

  106. Sitapara RA, Gauthier AG, Patel VS, Lin M, Zur M, Ashby CR Jr, Mantell LL (2020) The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Mol Med 26(1):98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ying W, Tseng A, Chang RC, Morin A, Brehm T, Triff K, Nair V, Zhuang G, Song H, Kanameni S, Wang H, Golding MC, Bazer FW, Chapkin RS, Safe S, Zhou B (2015) MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J Clin Invest 125(11):4149–4159

    Article  PubMed  PubMed Central  Google Scholar 

  108. Siouti E, Andreakos E (2019) The many facets of macrophages in rheumatoid arthritis. Biochem Pharmacol 165:152–169

    Article  CAS  PubMed  Google Scholar 

  109. Huang X, Li Y, Fu M, Xin HB (2018) Polarizing macrophages in vitro. Methods Mol Biol 1784:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tian Y, Yang C, Yao Q, Qian L, Liu J, Xie X, Ma W, Nie X, Lai B, Xiao L, Wang N (2019) Procyanidin B2 activates PPARγ to induce M2 polarization in mouse macrophages. Front Immunol 10:1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee RH, Vazquez G (2013) Evidence for a prosurvival role of alpha-7 nicotinic acetylcholine receptor in alternatively (M2)-activated macrophages. Physiol Rep 1(7):e00189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP (2017) Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med 282(1):64–75

    Article  CAS  PubMed  Google Scholar 

  113. Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, Chavan S, Al-Abed Y, Tracey KJ (2009) Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 23(1):41–45

    Article  CAS  PubMed  Google Scholar 

  114. Yi L, Lyu YJ, Peng C, Zhu RL, Bai SS, Liu L, Wang PX, Zhou H, Dong Y (2018) Corrigendum to “Sinomenine inhibits fibroblast-like synoviocyte proliferation by regulating α7nAChR expression via ERK/Egr-1 pathway”. Int Immunopharmacol 62:339

    Article  CAS  PubMed  Google Scholar 

  115. Yang Z, Yin Q, Olatunji OJ, Li Y, Pan S, Wang DD, Zuo J (2020) Activation of cholinergic anti-inflammatory pathway involved in therapeutic actions of α-mangostin on lipopolysaccharide-induced acute lung injury in rats. Int J Immunopathol Pharmacol 34:2058738420954941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wei L, Zhang YY (2019) Effects of tripterygium glycosides on fibroblast-like synoviocyte α7 nicotinic acetylcholine receptor and inflammatory factors in patients with rheumatoid arthritis. Shandong J Tradit Chin Med 38(12):1166–1197

    Google Scholar 

  117. Xing J, Jiang P, Jiang YH, Pang AM, Mu LL, Liang ZQ (2018) Effects of Hebi recipe on the expression of α7nAChR, STAT3 protein and the expression of TNF-α, IL-6, IL-17 on rheumatoid arthritis rats. Chin J Tradit Chin Med 33(02):730–733

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Fund for Key Projects of Wannan Medical College (WK2020ZF21), Research project of traditional Chinese Medicine Inheritance and innovation of Anhui Province (2020zcyb02), Scientific Research Project of Anhui Provincial Health Commission (AHWJ2021b038).

Author information

Authors and Affiliations

Authors

Contributions

PS wrote the manuscript. ZSS, WYJ and CXP collected the references and participated in the drafting. WYJ, OOJ and ZJ checked, proofread, and polished the manuscript. YQ and ZJ conceived the idea of this work. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Qin Yin or Jian Zuo.

Ethics declarations

Conflict of interest

The authors declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Wu, YJ., Zhang, SS. et al. The Effect of α7nAChR Signaling on T Cells and Macrophages and Their Clinical Implication in the Treatment of Rheumatic Diseases. Neurochem Res 47, 531–544 (2022). https://doi.org/10.1007/s11064-021-03480-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03480-1

Keywords

Navigation