Skip to main content

Advertisement

Log in

Effect of P-glycoprotein Inhibition on the Penetration of Ceftriaxone Across the Blood–Brain Barrier

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recent studies indicate that inhibition of the efflux transporter P-glycoprotein (P-gp) at the blood–brain barrier (BBB) may represent a putative strategy to increase the BBB penetration of several antibiotics. Therefore, the present study aimed to investigate the effect of P-gp inhibition on the transport of ceftriaxone (CFX) across the BBB. Blood and brain microdialysis in rats was used to monitor blood and brain unbound CFX concentrations following intravenous administration (50 mg/kg), with or without pretreatment with one of the P-gp inhibitors, cyclosporin A (6.25, 12.5, 25 mg/kg) or verapamil (5, 10, 20 mg/kg). An inhibitory effect was demonstrated by an increase in the ratio of unbound brain to unbound blood concentration (Kp.uu.brain) of CFX. The concentrations of CFX in blood and brain from 0 to 180 min after intravenous administration (CFX, 50 mg/kg) ranged from 3 to 40 μg/ml and 1 to 10 μg/ml, respectively. The Kp.uu.brain of CFX was 24.74 ± 1.34%. Pretreatment with cyclosporin A increased the brain concentration and the Kp.uu.brain of CFX in a dose-dependent manner. However, pretreatment with verapamil increased the brain concentration of CFX but not the Kp.uu.brain. The present data shows that CFX might be a substrate of P-gp efflux transporter at the BBB and P-gp inhibition might enhance the brain concentration of CFX. Future studies involving more selective P-gp inhibitors or knockout mouse models should be conducted to specifically elucidate the impact of P-gp inhibition on penetration of CFX across the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oordt-Speets AM, Bolijn R, van Hoorn RC, Bhavsar A, Kyaw MH (2018) Global etiology of bacterial meningitis: a systematic review and meta-analysis. PLoS One 13:e0198772

    Article  PubMed  PubMed Central  Google Scholar 

  2. Young N, Thomas M (2018) Meningitis in adults: diagnosis and management. Intern Med J 48:1294–1307

    Article  PubMed  Google Scholar 

  3. van de Beek D, Cabellos C, Dzupova O, Esposito S, Klein M, Kloek AT, Leib SL, Mourvillier B, Ostergaard C, Pagliano P, Pfister HW, Read RC, Sipahi OR, Brouwer MC, Brain ESGfIot (2016) ESCMID guideline: diagnosis and treatment of acute bacterial meningitis. Clin Microbiol Infect 22(Suppl 3):S37-62

    Article  PubMed  Google Scholar 

  4. van de Beek D, Brouwer MC, Thwaites GE, Tunkel AR (2012) Advances in treatment of bacterial meningitis. Lancet 380:1693–1702

    Article  PubMed  Google Scholar 

  5. Weinstein MP, Klugman KP, Jones RN (2009) Rationale for revised penicillin susceptibility breakpoints versus Streptococcus pneumoniae: coping with antimicrobial susceptibility in an era of resistance. Clin Infect Dis 48:1596–1600

    Article  CAS  PubMed  Google Scholar 

  6. Granero L, Santiago M, Cano J, Machado A, Peris JE (1995) Analysis of ceftriaxone and ceftazidime distribution in cerebrospinal fluid of and cerebral extracellular space in awake rats by in vivo microdialysis. Antimicrob Agents Chemother 39:2728–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nau R, Prange HW, Muth P, Mahr G, Menck S, Kolenda H, Sorgel F (1993) Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agents Chemother 37:1518–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Furtado D, Bjornmalm M, Ayton S, Bush AI, Kempe K, Caruso F (2018) Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater 30:e1801362

    Article  PubMed  Google Scholar 

  9. Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA, Prantil-Baun R, Watters A, Henry O, Benz M, Sanchez H, McCrea HJ, Goumnerova LC, Song HW, Palecek SP, Shusta E, Ingber DE (2019) Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10:2621

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nau R, Sorgel F, Eiffert H (2010) Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev 23:858–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu K, Xie X, Zhao YN, Li Y, Ruan J, Li HR, Jin T, Yang XL (2015) Chitosan influences the expression of P-gp and metabolism of norfloxacin in grass carp. J Aquat Anim Health 27:104–111

    Article  CAS  PubMed  Google Scholar 

  12. Lagas JS, Sparidans RW, van Waterschoot RA, Wagenaar E, Beijnen JH, Schinkel AH (2008) P-glycoprotein limits oral availability, brain penetration, and toxicity of an anionic drug, the antibiotic salinomycin. Antimicrob Agents Chemother 52:1034–1039

    Article  CAS  PubMed  Google Scholar 

  13. Worzfeld T, Schwaninger M (2016) Apicobasal polarity of brain endothelial cells. J Cereb Blood Flow Metabol 36:340–362

    Article  CAS  Google Scholar 

  14. Gosland MP, Lum BL, Sikic BI (1989) Reversal by cefoperazone of resistance to etoposide, doxorubicin, and vinblastine in multidrug resistant human sarcoma cells. Can Res 49:6901–6905

    CAS  Google Scholar 

  15. Heckler RP, Almeida GD, Santos LB, Borges DG, Neves JP, Onizuka MK, Borges FA (2014) P-gp modulating drugs greatly potentiate the in vitro effect of ivermectin against resistant larvae of Haemonchus placei. Vet Parasitol 205:638–645

    Article  CAS  PubMed  Google Scholar 

  16. Allegra S, Cardellino CS, Fatiguso G, Cusato J, De Nicolo A, Avataneo V, Bonora S, D’Avolio A, Di Perri G, Calcagno A (2018) Effect of ABCC2 and ABCG2 gene polymorphisms and CSF-to-serum albumin ratio on ceftriaxone plasma and cerebrospinal fluid concentrations. J Clin Pharmacol 58:1550–1556

    Article  CAS  PubMed  Google Scholar 

  17. O’Brien FE, Clarke G, Fitzgerald P, Dinan TG, Griffin BT, Cryan JF (2012) Inhibition of P-glycoprotein enhances transport of imipramine across the blood-brain barrier: microdialysis studies in conscious freely moving rats. Br J Pharmacol 166:1333–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kovar A, Dalla Costa T, Derendorf H (1997) Comparison of plasma and free tissue levels of ceftriaxone in rats by microdialysis. J Pharm Sci 86:52–56

    Article  CAS  PubMed  Google Scholar 

  19. Zimmermann ES, de Miranda SC, Neris C, Torres B, Schmidt S, Dalla Costa T (2019) Population pharmacokinetic modeling to establish the role of P-glycoprotein on ciprofloxacin distribution to lung and prostate following intravenous and intratracheal administration to Wistar rats. Eur J Pharma Sci 127:319–329

    Article  CAS  Google Scholar 

  20. Tasso L, Bettoni CC, Oliveira LK, Dalla Costa T (2008) Evaluation of gatifloxacin penetration into skeletal muscle and lung by microdialysis in rats. Int J Pharm 358:96–101

    Article  CAS  PubMed  Google Scholar 

  21. Chen C, Zhou H, Guan C, Zhang H, Li Y, Jiang X, Dong Z, Tao Y, Du J, Wang S, Zhang T, Du N, Guo J, Wu Y, Song Z, Luan H, Wang Y, Du H, Zhang S, Li C, Chang H, Wang T (2020) Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates: a microdialysis study in rats. Pharmacol Res Perspect 8:e00575

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mercolini L, Mandrioli R, Iannello C, Matrisciano F, Nicoletti F, Raggi MA (2009) Simultaneous analysis of diazepam and its metabolites in rat plasma and brain tissue by HPLC-UV and SPE. Talanta 80:279–285

    Article  CAS  PubMed  Google Scholar 

  23. Li S, Cao W, Hui YS, Wen W (2014) Simple and reusable picoinjector for liquid delivery via nanofluidics approach. Nanoscale Res Lett 9:147

    Article  PubMed  PubMed Central  Google Scholar 

  24. Glowka FK, Hermann TW, Danielak D, Zabel M, Hermann J (2019) Bioavailability of moclobemide from two formulation tablets in healthy humans. Pharmazie 74:97–100

    CAS  PubMed  Google Scholar 

  25. Liu H, Dong K, Zhang W, Summerfield SG, Terstappen GC (2018) Prediction of brain:blood unbound concentration ratios in CNS drug discovery employing in silico and in vitro model systems. Drug Discovery Today 23:1357–1372

    Article  CAS  PubMed  Google Scholar 

  26. Gu L, Ma M, Zhang Y, Zhang L, Zhang S, Huang M, Zhang M, Xin Y, Zheng G, Chen S (2019) Comparative pharmacokinetics of tedizolid in rat plasma and cerebrospinal fluid. Regulat Toxicol Pharmacol 107:104420

    Article  CAS  Google Scholar 

  27. Chang YL, Chou MH, Lin MF, Chen CF, Tsai TH (2001) Effect of cyclosporine, a P-glycoprotein inhibitor, on the pharmacokinetics of cefepime in rat blood and brain: a microdialysis study. Life Sci 69:191–199

    Article  CAS  PubMed  Google Scholar 

  28. Dankner WM, Connor JD, Sawyer M, Straube R, Spector SA (1988) Treatment of bacterial meningitis with once daily ceftriaxone therapy. J Antimicrob Chemother 21:637–645

    Article  CAS  PubMed  Google Scholar 

  29. Martin E, Koup JR, Paravicini U, Stoeckel K (1984) Pharmacokinetics of ceftriaxone in neonates and infants with meningitis. J Pediatr 105:475–481

    Article  PubMed  Google Scholar 

  30. Garcia-Varela L, Vallez Garcia D, Rodriguez-Perez M, van Waarde A, Sijbesma JWA, Schildt A, Kwizera C, Aguiar P, Sobrino T, Dierckx R, Elsinga PH, Luurtsema G (2020) Test-retest repeatability of [(18)f]mc225-pet in rodents: a tracer for imaging of P-gp function. ACS Chem Neurosci 11:648–658

    Article  CAS  PubMed  Google Scholar 

  31. Latif R, Dajani AS (1983) Ceftriaxone diffusion into cerebrospinal fluid of children with meningitis. Antimicrob Agents Chemother 23:46–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Del Rio M, McCracken GH Jr, Nelson JD, Chrane D, Shelton S (1982) Pharmacokinetics and cerebrospinal fluid bactericidal activity of ceftriaxone in the treatment of pediatric patients with bacterial meningitis. Antimicrob Agents Chemother 22:622–627

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gupta A, Chatelain P, Massingham R, Jonsson EN, Hammarlund-Udenaes M (2006) Brain distribution of cetirizine enantiomers: comparison of three different tissue-to-plasma partition coefficients: K(p), K(p, u), and K(p, uu). Drug Metabol Disposit 34:318–323

    Article  CAS  Google Scholar 

  34. Bengtsson J, Ederoth P, Ley D, Hansson S, Amer-Wahlin I, Hellstrom-Westas L, Marsal K, Nordstrom CH, Hammarlund-Udenaes M (2009) The influence of age on the distribution of morphine and morphine-3-glucuronide across the blood-brain barrier in sheep. Br J Pharmacol 157:1085–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morita N, Kusuhara H, Sekine T, Endou H, Sugiyama Y (2001) Functional characterization of rat organic anion transporter 2 in LLC-PK1 cells. J Pharmacol Exp Ther 298:1179–1184

    CAS  PubMed  Google Scholar 

  36. Liao XY, Deng QQ, Han L, Wu ZT, Peng ZL, Xie Y, Wang GJ, Aa JY, Pan GY (2020) Leflunomide increased the renal exposure of acyclovir by inhibiting OAT1/3 and MRP2. Acta Pharmacol Sin 41:129–137

    Article  CAS  PubMed  Google Scholar 

  37. Hagos FT, Daood MJ, Ocque JA, Nolin TD, Bayir H, Poloyac SM, Kochanek PM, Clark RS, Empey PE (2017) Probenecid, an organic anion transporter 1 and 3 inhibitor, increases plasma and brain exposure of N-acetylcysteine. Xenobiotica 47:346–353

    Article  CAS  PubMed  Google Scholar 

  38. Liu J, Zhang N, Li N, Fan X, Li Y (2019) Influence of verapamil on the pharmacokinetics of oridonin in rats. Pharm Biol 57:787–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang Y, Zhao J, Jian W, Wang G (2018) Effects of verapamil on the pharmacokinetics of dihydromyricetin in rats and its potential mechanism. Xenobiotica 48:839–844

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Zhang X, Huang X, Li Y, Wu M, Liu J (2016) The drug-drug interaction of sorafenib mediated by P-glycoprotein and CYP3A4. Xenobiotica 46:651–658

    Article  CAS  PubMed  Google Scholar 

  41. Hanko E, Tommarello S, Watchko JF, Hansen TW (2003) Administration of drugs known to inhibit P-glycoprotein increases brain bilirubin and alters the regional distribution of bilirubin in rat brain. Pediatr Res 54:441–445

    Article  CAS  PubMed  Google Scholar 

  42. Li L, Yao QQ, Xu SY, Hu HH, Shen Q, Tian Y, Pan LY, Zhou H, Jiang HD, Lu C, Yu LS, Zeng S (2014) Cyclosporin A affects the bioavailability of ginkgolic acids via inhibition of P-gp and BCRP. Eur J Pharma Biopharma 88:759–767

    Article  CAS  Google Scholar 

  43. Yang Y, Li P, Zhang Z, Wang Z, Liu L, Liu X (2020) Prediction of Cyclosporin-Mediated Drug Interaction Using Physiologically Based Pharmacokinetic Model Characterizing Interplay of Drug Transporters and Enzymes. Int J Mol Sci 21:7023

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Military medical technology youth program of China [Grant number 17QNP060].

Funding

This work was supported by the Military medical technology youth program of China [Grant Number 17QNP060].

Author information

Authors and Affiliations

Authors

Contributions

SYH performed all experiments and wrote the manuscript; CYY, ZYJ, TRS, and ZJH helped with the animal experiments study; ZJT, NZY, and YSY conducted and supervised the whole experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhiyong Nie or Jiatang Zhang.

Ethics declarations

Conflict of interest

None.

Ethical Approval

Animal care and use were in accordance with the NIH Guide for the Care and Use of Laboratory Animals (NIH Publication 85–23, Bethesda, MD) and approved by the Committee on Animal Use for Research and Education of the Laboratory Animals Centre, General Hospital of Chinese People’s Liberation Army (Beijing, China).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (xlsx 38 KB)

Supplementary file2 (xlsx 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, Y., Cen, Y., Zhang, Y. et al. Effect of P-glycoprotein Inhibition on the Penetration of Ceftriaxone Across the Blood–Brain Barrier. Neurochem Res 47, 634–643 (2022). https://doi.org/10.1007/s11064-021-03472-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03472-1

Keywords

Navigation