Skip to main content
Log in

Antioxidant Effect of Hydroxytyrosol, Hydroxytyrosol Acetate and Nitrohydroxytyrosol in a Rat MPP+ Model of Parkinson’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

3,4-Dihydroxyphenyl ethanol, known as hydroxytyrosol (HTy), is a phenylpropanoid found in diverse vegetable species. Several studies have demonstrated that HTy is a potent antioxidant. Thus, our study is aimed to evaluate the antioxidant effect of HTy and its derivatives, hydroxytyrosol acetate (HTyA) and nitrohydroxytyrosol (HTyN), in a model of oxidative stress induced by 1-methyl-4-phenylpyridinium (MPP+) in rats. Rats were administered intravenously (i.v.) in the tail with 1 mL saline solution or polyphenol compound (1.5 mg/kg) 5 min before intrastriatal infusion of 10 µg MPP+/8 µL. We found that rats injured with MPP+, pretreatment with HTy, HTyA or HTyN significantly decreased ipsilateral turns. This result was consistent with a significant preservation of striatal dopamine levels and decreased lipid fluorescence products (LFP), a marker of oxidative stress. Brain GSH/GSSG ratio, from rats pretreated with HTy or HTyN showed a significant preservation of that marker, decreased as a consequence of MPP+-induced oxidative damage. These results show an antioxidant effect of HTy, HTyA and HTyN in the MPP+ model of Parkinson’s disease in the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or used during the study are available from the corresponding author by request.

Code Availability

Codes related to the study are available from the corresponding author by request.

References

  1. Clark C (2004) Neuroprotection and pharmacotherapy for motor symptoms in Parkinson’s disease. Lancet Neurol 3:466–474. https://doi.org/10.1016/S1474-4422(04)00823-3

    Article  Google Scholar 

  2. Gómez-Chavarín M, Roldan-Roldan G, Morales-Espinosa G, Pérez-Soto G (2012) Mecanismos fisiopatológicos involucrados en la enfermedad de Parkinson. Arch Neurocien (Mex) 17:25–33

    Google Scholar 

  3. Davis G, Williams A, Markey S, Ebert M, Caine E, Reichert C, Kopin I (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psych Res 1:249–254. https://doi.org/10.1016/0165-1781(79)90006-4

    Article  CAS  Google Scholar 

  4. Pérez-Barrón GA, Avila-Acevedo JG, García-Bores AM, Montes S, García-Jiménez S, León-Rivera I, Rubio-Osornio M, Monroy-Noyola A (2015) Neuroprotective effect of Buddleja cordata methanolic extract in the 1-methyl-4-phenylpyridinium Parkinson’s disease rat model. J Nat Med 69:86–93. https://doi.org/10.1007/s11418-014-0866-4

    Article  PubMed  CAS  Google Scholar 

  5. D’Angelo S, Manna C, Migliardi V, Mazzoni O, Morrica P, Capasso G, Pontoni G, Galletti P, Zappia V (2001) Pharmacokinetics and metabolism of hydroxytyrosol, a natural antioxidant from olive oil. Drug Metab Dispos 29:1492–1498

    PubMed  Google Scholar 

  6. Gallardo E, Palma-Valdés R, Espartero JL, Santiago M (2014) In vivo striatal measurement of hydroxytyrosol, and its metabolite (homovanillic alcohol), compared with its derivative nitrohydroxytyrosol. Neurosci Lett 579:173–176. https://doi.org/10.1016/j.neulet.2014.07.037

    Article  PubMed  CAS  Google Scholar 

  7. Miro-Casas E, Covas MI, Farre M, Fito M, Ortuno J, Weinbrenner T, Roset P, de la Torre R (2003) Hydroxytyrosol disposition in humans. Clin Chem 49:945–952. https://doi.org/10.1373/49.6.945

    Article  PubMed  CAS  Google Scholar 

  8. Gallardo E, Palma-Valdés R, Sarriá B, Gallardo I, Mateos R, Espartero JL (2006) Synthesis and antioxidant activity of alkyl nitroderivatives of hydroxytyrosol. Molecules 21:656. https://doi.org/10.3390/molecules21050656

    Article  CAS  Google Scholar 

  9. Vissers MN, Zock PL, Roodenburg AJC, Leenen R, Katan MB (2002) Olive oil phenols are absorbed in humans. J Nutr 132:409–417. https://doi.org/10.1093/jn/132.3.409

    Article  PubMed  CAS  Google Scholar 

  10. Covas MI, de la Torre K, Farre-Albaladejo M, Kaikkonen J, Fito M, Lopez-Sabater C, Pujadas-Bastardes MA, Joglar J, Weinbrenner T, Lamuela-Raventós RM, de la Torre R (2006) Postpandrial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Radic Biol Med 40:608–616. https://doi.org/10.1016/j.freeradbiomed.2005.09.027

    Article  PubMed  CAS  Google Scholar 

  11. Christian MS, Sharper VA, Hoberman AM et al (2004) The toxicity profile of hydrolyzed aqueous olive pulp extract. Drug Chem Toxicol 27:309–330. https://doi.org/10.1081/dct-200039714

    Article  PubMed  CAS  Google Scholar 

  12. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health”(ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2033, https://doi.org/10.2903/j.efsa.2011.2033. http://www.efsa.europa.eu/efsajournal

  13. Rodriguez-Gutiérrez G, Duthie GG, Wood S, Morrice P, Nicol F, Reid M, Cantlay LL, Kelder T, Horgan GW, Fernández-Bolaños J, Guzmán BD, Roos, (2012) Alperujo extract, hydroxytyrosol, and 3,4-dihidroxyphenylglycol are bioavailable and have antioxidant properties in vitamin E deficient rats-a proteomics and network analysis approach. Mol Nutr Food Res 56:1131–1147. https://doi.org/10.1002/mnfr.201100808

    Article  CAS  Google Scholar 

  14. De La Cruz JP, Ruiz-Moreno MI, Guerrero A, Reyes JJ, Benitez-Guerrero A, Espartero JL, González-Correa JA (2015) Differences in the neuroprotective effect of orally administered virgin olive oil (Olea europaea) Polyphenols tyrosol and hydroxytyrosol in rats. J Agric Food Chem 63:5957–5963. https://doi.org/10.1021/acs.jafc.5b00627

    Article  CAS  Google Scholar 

  15. Schaffer S, Podstawa M, Visioli F, Bogani P, Müller WE, Eckert GP (2007) Hydroxytyrosol-rich olive mill wastewater protects brain cells in vitro and ex vivo. J Agric Food Chem 55:5043–5049. https://doi.org/10.1021/jf0703710

    Article  PubMed  CAS  Google Scholar 

  16. González-Correa JA, Muñoz-Marín J, Arrebola MM, Guerrero A, Narbona F, López-Villodres J, De La Cruz JP (2007) Dietary virgin olive oil reduces oxidative stress and cellular damage in rat brain slices subjected to hypoxia–reoxygenation. Lipids 42:921–929. https://doi.org/10.1007/s11745-007-3097-6

    Article  PubMed  CAS  Google Scholar 

  17. Tasset I, Pontes AJ, Hinojosa AJ, De la Torre R, Túnez I (2011) Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington’s disease-like rat model. Nutr Neurosci 14:106–111. https://doi.org/10.1179/1476830511Y.0000000005

    Article  PubMed  CAS  Google Scholar 

  18. González-Correa JA, Navas MD, López-Villodres J, Trujillo M, Espartero JL, De La Cruz JP (2008) Neuroprotective effect of hydroxytyrosol and hydroxytyrosol acetate in rat brain slices subjected to hypoxia-reoxygenation. Neulet 446:143–146. https://doi.org/10.1016/j.neulet.2008.09.022

    Article  CAS  Google Scholar 

  19. Trujillo M, Mateos R, Collantes de Teran L, Espartero JL, Cert R, Jover M, Alcudia F, Bautista J, Cert A, Parrado J (2006) Lipophilic hydroxytyrosyl esters. Antioxidant activity in lipid matrices and biological systems. J Agric Food Chem 54:3779–3785. https://doi.org/10.1021/jf060520z

    Article  PubMed  CAS  Google Scholar 

  20. Grasso S, Siracusa L, Spataforma C, Renis M, Tringali C (2007) Hydroxytyrosol lipophilic analogues: enzymatic synthesis, radical scavenging activity and DNA oxidative damage protection. Bioorg Chem 35:137–152. https://doi.org/10.1016/j.bioorg.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  21. Mateos R, Domínguez MM, Espartero JL, Cert A (2003) Antioxidant effect of phenolic compounds, R-tocopherol, and other minor components in virgin olive oil. J Agric Food Chem 51:7170–7175. https://doi.org/10.1021/jf034415q

    Article  PubMed  CAS  Google Scholar 

  22. Gallardo E, Madrona A, Palma-Valdés R, Trujillo M, Espartero JL, Santiago M (2014) The effect of hydroxytyrosol and its nitroderivatives on catechol-O-methyl transferase activity in rat striatal tissue. RSC Adv 4:61086–61091. https://doi.org/10.1039/C4RA09872B

    Article  CAS  Google Scholar 

  23. Gordin A, Kaakkola S, Teravainen H (2004) Clinical advantages of COMT inhibition with entacapone—a review. J Neural Transm 111:1343–1363. https://doi.org/10.1007/s00702-004-0190-3

    Article  PubMed  CAS  Google Scholar 

  24. Fernández-Bolaños J, Heredia A, Rodríguez G, Rodríguez R, Jiménez A, Gillen R (2005) Methods for obtaining purified hydroxytyrosol from products and by products derived from the olive tree. U.S. 6849,770 B2

  25. Trujillo M, Gallardo E, Madrona A, Bravo L, Sarriá B, González-Correa JA, Mateos R, Espartero JL (2014) Synthesis and antioxidant activity of nitrohydroxytyrosol and its acyl derivatives. Agric Food Chem 62:10297–10303. https://doi.org/10.1021/jf503543x

    Article  CAS  Google Scholar 

  26. Napolitano A, Panzella L, Savarese M, Sacchi R, Giudicianni I, Paolillo L, D’Ischia M (2004) Acid-induced structural modifications of unsaturated fatty acids and phenolic olive oil constituents by nitrite ions: a chemical assessment. Chem Res Toxicol 17:1329–1337. https://doi.org/10.1021/tx049880b

    Article  PubMed  CAS  Google Scholar 

  27. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  28. Schwarcz R, Fuxe K, Agnati LF, Hokfelt T, Coyle JT (1979) Rotational behaviour in rats with unilateral striatal kainic acid le- sions: a behavioural model for studies on intact dopamine receptors. Brain Res 170:485–495. https://doi.org/10.1016/0006-8993(79)90966-1

    Article  PubMed  CAS  Google Scholar 

  29. Alcaraz-Zubeldia M, Rojas P, Boll C, Ríos C (2001) Neuroprotective effect of acute and chronic administration of copper (II) sulfate against MPP+ neurotoxicity in mice. Neurochem Res 26:61–66. https://doi.org/10.1023/a:1007680616056

    Article  Google Scholar 

  30. Triggs WJ, Willmore LJ (1984) In vivo lipid peroxidation in rat brain following intracortical Fe++ injection. J Neurochem 42:976–979

    Article  CAS  Google Scholar 

  31. Aguirre-Vidal Y, Monroy-Noyola A, Anaya-Ramos L, Arteaga-Silva M, Mendez-Armenta M, Ostoa-Saloma P, Díaz-Zaragoza M, Morales-Montor J, Ríos C, Montes S (2017) β-Estradiol-3-benzoate confers neuroprotection in Parkinson MPP+ rat model through inhibition of lipid peroxidation. Steroids 126:7–14. https://doi.org/10.1016/j.steroids.2017.08.001

    Article  PubMed  CAS  Google Scholar 

  32. Hafeman D, Sunde R, Hoekstra WG (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104:580–587. https://doi.org/10.1093/jn/104.5.580

    Article  PubMed  CAS  Google Scholar 

  33. Pérez-Barrón GA, Montes S, Rubio-Osornio M, Avila-Acevedo JG, García-Jiménez S, Rios LC, Monroy-Noyola A (2020) Hydroxytyrosol inhibits MAO isoforms and prevents neurotoxicity inducible by MPP+ in vivo. Front Biosci (Schol Ed) 12:25–37

    Article  Google Scholar 

  34. Miró-Casas E, Covas MI, Fitó M, Farré-Albadalejo M, Marrugat J, de la Torre R (2003) Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans. Eur J Clin Nutr 57:186–190. https://doi.org/10.1038/sj.ejcn.1601532

    Article  PubMed  CAS  Google Scholar 

  35. De la Torre-Carbot K, Chávez-Servín JL, Jaúregui O, Castellote AI, Lamuela-Raventós RM, Fitó M, Covas MI, Muñoz-Aguayo D, López-Sabater MC (2007) Presence of virgin olive oil phenolic metabolites in human low density lipoprotein fraction: Determination by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry. Anal Chim Acta 583:402–410. https://doi.org/10.1016/j.aca.2006.10.029

    Article  PubMed  CAS  Google Scholar 

  36. Visioli F, Poli A, Galli C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75. https://doi.org/10.1002/med.1028

    Article  PubMed  CAS  Google Scholar 

  37. Visioli F, Galli C, Grande S et al (2003) Hydroxytyrosol excretion differs between rats and humans and depends on the vehicle of administration. J Nutr 133:2612–2615. https://doi.org/10.1093/jn/133.8.2612

    Article  PubMed  CAS  Google Scholar 

  38. Vissers MN, Zock PL, Roodenburg AJC, Leenen R, Katan MB (2002) Olive oil phenols are absorbed in humans. J Nutr. https://doi.org/10.1093/jn/132.3.409

    Article  PubMed  Google Scholar 

  39. Konishi Y, Kobayashi S (2004) Transepithelial transport of chlor-ogenic acid, caffeic acid, and their colonic metabolites in intestinalcaco-2 cell monolayers. J Agric Food Chem 52:2518–2526. https://doi.org/10.1021/jf035407c

    Article  PubMed  CAS  Google Scholar 

  40. Watanabe H, Yashiro T, Tohjo Y, Konishi Y (2006) Non-involvement of the human monocarboxylic acid transporter 1(MCT1) in the transport of phenolic acid. Biosci Biotechnol Biochem 70:928–1933. https://doi.org/10.1271/bbb.60093

    Article  CAS  Google Scholar 

  41. Bai C, Yan X, Takenaga M, Sekiya K, Nagata T (1998) Determination of synthetic hydroxytyrosol in rat plasma by CG-MS. J Agric Food Chem 46:3998–4001

    Article  CAS  Google Scholar 

  42. Gordon GH, Paiva-Martins F, Almeida M (2001) Antioxidant activity of hydroxytyrosol acetate compared with that of other olive oil polyphenols. J Agric Food Chem 49:2480–2485. https://doi.org/10.1021/jf000537w

    Article  PubMed  CAS  Google Scholar 

  43. Rodriguez-Morató J, Xicota L, Fitó M, Farré M, Dierssen M, De la Torre R (2015) Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 20:4655–4680. https://doi.org/10.3390/molecules20034655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Blum D, Torch S, Lambeng N, Nissou M, Benabid A, Sadoul R, Verna M (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172. https://doi.org/10.1016/s0301-0082(01)00003-x

    Article  PubMed  CAS  Google Scholar 

  45. Visioli F, Bellomo A, Galli C (1998) Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 247:60–64. https://doi.org/10.1006/bbrc.1998.8735

    Article  PubMed  CAS  Google Scholar 

  46. Zou X, Feng Z, Li Y, Wang Y, Wertz K, Weber P, Fu Y, Liu J (2012) Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: activation of Nrf2 and JNK-p62/SQSTM1 pathways. J Nutr Biochem 23:994–1006. https://doi.org/10.1016/j.jnutbio.2011.05.006

    Article  PubMed  CAS  Google Scholar 

  47. Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M (2020) Healthy effects of plant polyphenols: molecular mechanisms. Int J Mol Sci 21(4):1250. https://doi.org/10.3390/ijms21041250

    Article  PubMed Central  CAS  Google Scholar 

  48. González-Santiago M, Fonollá J, Lopez-Huertas E (2010) Human absorption of a supplement containing purified hydroxytyrosol, a natural antioxidant from olive oil, and evidence for its transient association with low-density lipoproteins. Pharmacol Res 61:364–370. https://doi.org/10.1016/j.phrs.2009.12.016

    Article  PubMed  CAS  Google Scholar 

  49. Trovato Salinaro A, Cornelius C, Koverech G, Koverech A, Scuto M, Lodato F, Fronte V, Muccilli V, Reibaldi M, Longo A et al (2014) Cellular stress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorderlinked to Alzheimer’s disease. Front Pharmacol 6(5):129. https://doi.org/10.3389/fphar.2014.00129

    Article  CAS  Google Scholar 

  50. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13(11):1763–811. https://doi.org/10.1089/ars.2009.3074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhu L, Liu Z, Feng Z, Hao J, Shen W, Li X, Sun L, Sharman E, Wang Y, Wertz K et al (2010) Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epitelial cells. J Nutr Biochem 21:1089–1098. https://doi.org/10.1016/j.jnutbio.2009.09.006

    Article  PubMed  CAS  Google Scholar 

  52. Martín MA, Ramos S, Granado-Serrano AB, Rodríguez-Ramiro M, Trujillo M, Bravo L, Goya L (2010) Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells. Mol Nutr Food Res 54:956–966. https://doi.org/10.1002/mnfr.200900159

    Article  PubMed  CAS  Google Scholar 

  53. Sgarbossa A, Dal Bosco M, Pressi G, Cuzzocrea S, Dal Toso R, Menegazzi M (2012) Phenylpropanoid glycosides from plant cell cultures induce heme oxygenase 1 gene expression in a human keratinocyte cell line by affecting the balance of NRF2 and BACH1 transcription factors. Chem Biol Interact 199:87–95. https://doi.org/10.1016/j.cbi.2012.06.006

    Article  PubMed  CAS  Google Scholar 

  54. Bayram B, Ozcelik B, Grimm S, Roeder T, Schrader C, Ernst IM, Wagner AE, Grune T, Frank J, Rimbach GA (2012) A diet rich in olive oil phenolics reduces oxidative stress in the heart of SAMP8 mice by induction of Nrf2-dependent gene expression. Rejuvenation Res 15:71–81. https://doi.org/10.1089/rej.2011.1245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yu G, Deng A, Tang W, Ma J, Yuan C, Ma J (2016) Hydroxytyrosol induces phase II detoxifying enzyme expression and effectively protects dopaminergic cells against dopamine- and 6-hydroxydopamine induced cytotoxicity. Neurochem Int 96:113–120. https://doi.org/10.1016/j.neuint.2016.03.005

    Article  PubMed  CAS  Google Scholar 

  56. Funakohi-Tago M, Sakata T, Fujiwara S, Sakakura A, Sugai T, Tago K, Tamura H (2018) Hydroxytyrosol butyrate inhibits 6-OHDA-induced apoptosis through activation of the Nrf2/HO-axis in SH-SY5Y cells. Eur J Pharmacol 834:246–256. https://doi.org/10.1016/j.ejphar.2018.07.043

    Article  PubMed  CAS  Google Scholar 

  57. Zheng A, Li H, Xu J, Cao K, Li H, Pu W, Yang Z, Peng Y, Long J, Liu J et al (2015) Hydroxytyrosol improves mitochondrial function and reduces oxidative stress in the brain of db/db mice: role of AMP-activated protein kinase activation. Br J Nutr 113(11):1667–1676. https://doi.org/10.1017/S0007114515000884

    Article  PubMed  CAS  Google Scholar 

  58. Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Pakinson’s disease. Biochem Pharmacol 64:1037–1048. https://doi.org/10.1016/s0006-2952(02)01174-7

    Article  PubMed  CAS  Google Scholar 

  59. Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665. https://doi.org/10.1002/(SICI)1097-4547(19990315)55:6%3c659::AID-JNR1%3e3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  60. Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25. https://doi.org/10.1016/j.freeradbiomed.2013.05.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Li L, Shi L, Liu H, Luo Q, Huang C, Liu W, Chen X, Zeng W, Chen Z (2017) Changes in blood anti-oxidation enzyme levels in MPTP-treated monkeys. Neurosci Lett 10(649):93–99. https://doi.org/10.1016/j.neulet.2017.04.004

    Article  CAS  Google Scholar 

  62. Watts RN, Hawkins C, Ponka P, Richardson DR (2006) Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Proc Natl Acad Sci USA 103:7670–7675. https://doi.org/10.1073/pnas.0602515103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kunikowska G, Jenner P (2003) Alterations in m-RNA expression for Cu, Zn-superoxide dismutase and glutathione peroxidase in the basal ganglia of MPTP-treated marmosets and patients with Parkinson’s disease. Brain Res 2:206–218. https://doi.org/10.1016/s0006-8993(03)02240-6

    Article  Google Scholar 

  64. Sutphin MS, Buckman TD (1991) Effects of low selenium diets on antioxidant status and MPTP toxicity in mice. Neurochem Res 12:1257–1263. https://doi.org/10.1007/BF00966655

    Article  Google Scholar 

  65. Medda N, Patra R, Ghosh TK, Maiti S (2020) Neurotoxic mechanism of arsenic: synergistic effect of mitochondrial instability, oxidative stress, and hormonal-neurotransmitter impairment. Biol Trace Elem Res 198(1):8–15. https://doi.org/10.1007/s12011-020-02044-8

    Article  PubMed  CAS  Google Scholar 

  66. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 174(1):214–226. https://doi.org/10.1016/0003-2697(76)90326-2

    Article  Google Scholar 

  67. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27(3):502–522. https://doi.org/10.1016/0003-2697(69)90064-5

    Article  PubMed  CAS  Google Scholar 

  68. Milani P, Ambrosi G, Gammoh O, Blandini F, Cereda C (2013) SOD1 and DJ-1 converge at Nrf2 pathway: a clue for antioxidant therapeutic potential in neurodegeneration. Oxid Med Cell Longev 2013:836760. https://doi.org/10.1155/2013/836760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kumar R, Nigam L, Singh AP, Singh K, Subbarao N, Dey S (2017) Design, synthesis of allosteric peptide activator for human SIRT and its biological evaluation in cellular model of Alzheimer’s disease. Eur J Med Chem 127:909–916. https://doi.org/10.1016/j.ejmech.2016.11.001

    Article  PubMed  CAS  Google Scholar 

  70. Cornelius C, Trovato Salinaro A, Scuto M, Fronte V, Cambria MT, Pennisi M, Bella R, Milone P, Graziano A, Crupi R et al (2013) Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immun Ageing 10(1):41. https://doi.org/10.1186/1742-4933-10-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Peng S, Zhang B, Yao J, Duan D, Fang J (2015) Dual protection of hydroxytyrosol, an olive oil polyphenol, against oxidative damage in PCcells. Food Funct 6(6):2091–2100. https://doi.org/10.1039/c5fo00097a

    Article  PubMed  CAS  Google Scholar 

  72. Calabrese V, Scapagnini G, Davinelli S, Koverech G, Koverech A, De Pasquale C, Salinaro AT, Scuto M, Calabrese EJ, Genazzani AR (2014) Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. J Cell Commun Signal 8(4):369–384. https://doi.org/10.1007/s12079-014-0253-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Amara I, Timoumi R, Annabi E, Di Rosa G, Scuto M, Najjar MF, Calabrese V, Abid-Essefi S (2020) Di (2-ethylhexyl) phthalate targets the thioredoxin system and the oxidative branch of the pentose phosphate pathway in liver of Balb/c mice. Environ Toxicol 35(1):78–86. https://doi.org/10.1002/tox.22844

    Article  PubMed  CAS  Google Scholar 

  74. Perrone MA, Gualtieri P, Gratteri S, Ali W, Sergi D, Muscoli S, Cammarano A, Bernardini S, Di Rienzo L, Romeo E (2019) Effects of postprandial hydroxytyrosol and derivates on oxidation of LDL, cardiometabolic state and gene expression: a nurtrigenomic approach for cardiovascular prevention. J Cardiovasc Med 20(7):419–426. https://doi.org/10.2459/JCM.0000000000000816

    Article  CAS  Google Scholar 

  75. Oliveras-López MJ, Molina JJ, Mir MV, Rey EF, Martin F, de la Serrana HL (2013) Extra virgin olive oil (EVOO) consumption and antioxidant status in healthy institutionalized elderly humans. Arch Gerontol Geriatr 57(2):234–242. https://doi.org/10.1016/j.archger.2013.04.002

    Article  PubMed  CAS  Google Scholar 

  76. Pereira-Caro G, Madrona A, Bravo L, Espartero JL, Alcudia F, Cert A, Mateos R (2009) Antioxidant activity evaluation of alkyl hydroxytyrosyl ethers, a new class of hydroxytyrosol derivatives. Food Chem 115:86–91. https://doi.org/10.1016/j.foodchem.2008.11.069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported partially by CONACYT 840801. Pérez-Barrón is grateful to CONACYT (349836), to “Programa de Doctorado en Farmacia (UAEM) y CONACYT-MORELOS” (FOMIX 2013-1 # 224038) and to “Programa de Becas mixtas para becarios CONACYT nacionales: BECAS MIXTAS 2014—MZO2015 MOVILIDAD EN EL EXTRANJERO” (290842) for the scholarship Grants.

Funding

This project was supported partially by CONACYT and FORDECYT-PRONACES 840801. The funding agencies had no role in the design and conduct of the study; in analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GP development the methodology, formal analysis, investigation and writing-original. AM and CR participated in conceptualization, formal analysis, investigation, resources, project administration, writing review and editing. SM, MS and JLE participated in supervision, conceptualization, resources, writing review and editing. YA and EG participated in methodology.

Corresponding author

Correspondence to Antonio Monroy-Noyola.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical Approval

The experimental protocol was established, according with the ethical principles and regulations specified by the Animal Care and Use Committee of the National Institute of Neurology and Neurosurgery and the standards of the National Institutes of Health of Mexico.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Barrón, G., Montes, S., Aguirre-Vidal, Y. et al. Antioxidant Effect of Hydroxytyrosol, Hydroxytyrosol Acetate and Nitrohydroxytyrosol in a Rat MPP+ Model of Parkinson’s Disease. Neurochem Res 46, 2923–2935 (2021). https://doi.org/10.1007/s11064-021-03379-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03379-x

Keywords

Navigation