Skip to main content

Advertisement

Log in

Cadmium Impairs Autophagy Leading to Apoptosis by Ca2+-Dependent Activation of JNK Signaling Pathway in Neuronal Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Autophagy, a process for self-degradation of intracellular components and dysfunctional organelles, is closely related with neurodegenerative diseases. It has been shown that cadmium (Cd) induces neurotoxicity partly by impairing autophagy. However, the underlying mechanism is not fully elucidated. In this study, we show that Cd induced expansion of autophagosomes with a concomitant abnormal expression of autophagy-related (Atg) proteins in PC12 cells and primary murine neurons. 3-MA, a classical inhibitor of autophagy, attenuated Cd-induced expansion of autophagosomes and apoptosis in the cells. Further investigation demonstrated that Cd activated JNK pathway contributing to autophagosome expansion-dependent neuronal apoptosis. This is supported by the findings that pharmacological inhibition of JNK with SP600125 or expression of dominant negative c-Jun markedly attenuated Cd-induced expansion of autophagosomes and abnormal expression of Atg proteins, as well as apoptosis in PC12 cells and/or primary neurons. Furthermore, we noticed that chelating intracellular free Ca2+ ([Ca2+]i) with BAPTA/AM profoundly blocked Cd-elicited activation of JNK pathway and consequential expansion of autophagosomes, abnormal expression of Atg proteins, and apoptosis in the neuronal cells. Similar events were also seen following prevention of [Ca2+]i elevation with EGTA or 2-APB, implying a Ca2+-dependent mechanism involved. Taken together, the results indicate that Cd impairs autophagy leading to apoptosis by Ca2+-dependent activation of JNK signaling pathway in neuronal cells. Our findings highlight that manipulation of intracellular Ca2+ level and/or JNK activity to ameliorate autophagy may be a promising intervention against Cd-induced neurotoxicity and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

ALS:

Amyotrophic lateral sclerosis

AMPK:

AMP-activated protein kinase

2-APB:

2-Aminoethoxydiphenyl borane

Atg:

Autophagy-related

BAPTA/AM:

1,2-Bis (o-aminophenoxy) ethane-N,N,N’,N’-tetraacetic acid tetra (acetoxymethyl) ester

Ca2 + :

Calcium ion

Cd:

Cadmium

CRAC:

Ca2+-release activated Ca2+

DAPI:

4′, 6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s Modified Eagle’s Medium

EGTA:

Ethylene glycol tetra-acetic acid

ER:

Endoplasmic reticulum

Erk1/2:

Extracellular signal-regulated kinase ½

FBS:

Fetal bovine serum

GFP:

Green fluorescent protein

HD:

Huntington's disease

JNK:

C-Jun N-terminal kinase

LacZ:

β-Galacftosidase

LC3:

Microtuble-associated protein 1 light chain 3

3-MA:

3-Methyladenine

MAPK:

Mitogen-activated protein kinase

MDC:

Monodansylcadaverine

mTOR:

Mammalian target of rapamycin

mTORC1:

MTOR complexes 1

PBS:

Phosphate buffered saline

OD:

Optical density

PD:

Parkinson disease

PDL:

Poly-D-lysine

PI3K:

Phosphatidylinositol 3’-kinase

ROS:

Reactive oxygen species

TUNEL:

The terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end labeling

ULK1:

Unc51-like kinase 1

zVAD-fmk:

Z-Val-Ala-Asp-CH2F

References

  1. Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013:898034

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xu C, Liu C, Liu L, Zhang R, Zhang H, Chen S et al (2015) Rapamycin prevents cadmium-induced neuronal cell death via targeting both mTORC1 and mTORC2 pathways. Neuropharmacology 97:35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Panayi AE, Spyrou NM, Iversen BS, White MA, Part P (2002) Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol Sci 195:1–10

    Article  CAS  PubMed  Google Scholar 

  4. Lopez E, Figueroa S, Oset-Gasque MJ, Gonzalez MP (2003) Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 138:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mendez-Armenta M, Rios C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 23:350–358

    Article  CAS  PubMed  Google Scholar 

  6. Okuda B, Iwamoto Y, Tachibana H, Sugita M (1997) Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg 99:263–265

    Article  CAS  PubMed  Google Scholar 

  7. Goncalves JF, Fiorenza AM, Spanevello RM, Mazzanti CM, Bochi GV, Antes FG et al (2010) N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact 186:53–60

    Article  CAS  PubMed  Google Scholar 

  8. Feng Y, Yao Z, Klionsky DJ (2015) How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 25:354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49

    Article  CAS  PubMed  Google Scholar 

  10. Cerri S, Blandini F (2019) Role of autophagy in Parkinson’s disease. Curr Med Chem 26:3702–3718

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Klionsky DJ (2020) Autophagy and disease: unanswered questions. Cell Death Differ 27:858–871

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Z, Miah M, Culbreth M, Aschner M (2016) Autophagy in neurodegenerative diseases and metal neurotoxicity. Neurochem Res 41:409–422

    Article  CAS  PubMed  Google Scholar 

  14. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997

    Article  CAS  PubMed  Google Scholar 

  15. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  16. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ni HM, Bockus A, Wozniak AL, Jones K, Weinman S, Yin XM et al (2011) Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 7:188–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang H, Dong X, Zhao R, Zhang R, Xu C, Wang X et al (2019) Cadmium results in accumulation of autophagosomes-dependent apoptosis through activating Akt-impaired autophagic flux in neuronal cells. Cell Signal 55:26–39

    Article  CAS  PubMed  Google Scholar 

  19. Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q et al (2014) p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett 344:174–179

    Article  CAS  PubMed  Google Scholar 

  20. Xie CM, Chan WY, Yu S, Zhao J, Cheng CH (2011) Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic Biol Med 51:1365–1375

    Article  CAS  PubMed  Google Scholar 

  21. Chen SY, Chiu LY, Maa MC, Wang JS, Chien CL, Lin WW (2011) zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7:217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hamacher-Brady A (2012) Autophagy regulation and integration with cell signaling. Antioxid Redox Signal 17:756–765

    Article  CAS  PubMed  Google Scholar 

  23. Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem 86:225–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harr MW, Distelhorst CW (2010) Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol 2:a005579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. East DA, Campanella M (2013) Ca2+ in quality control: an unresolved riddle critical to autophagy and mitophagy. Autophagy 9:1710–1719

    Article  CAS  PubMed  Google Scholar 

  26. Son YO, Lee JC, Hitron JA, Pan J, Zhang Z, Shi X (2010) Cadmium induces intracellular Ca2+- and H2O2-dependent apoptosis through JNK- and p53-mediated pathways in skin epidermal cell line. Toxicol Sci 113:127–137

    Article  CAS  PubMed  Google Scholar 

  27. Lemarie A, Lagadic-Gossmann D, Morzadec C, Allain N, Fardel O, Vernhet L (2004) Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36:1517–1531

    Article  CAS  PubMed  Google Scholar 

  28. Wang SH, Shih YL, Ko WC, Wei YH, Shih CM (2008) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 65:3640–3652

    Article  CAS  PubMed  Google Scholar 

  29. Yang LY, Wu KH, Chiu WT, Wang SH, Shih CM (2009) The cadmium-induced death of mesangial cells results in nephrotoxicity. Autophagy 5:571–572

    Article  CAS  PubMed  Google Scholar 

  30. Shen HM, Dong SY, Ong CN (2001) Critical role of calcium overloading in cadmium-induced apoptosis in mouse thymocytes. Toxicol Appl Pharmacol 171:12–19

    Article  CAS  PubMed  Google Scholar 

  31. Chen L, Liu L, Luo Y, Huang S (2008) MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis. J Neurochem 105:251–261

    Article  CAS  PubMed  Google Scholar 

  32. Chen L, Liu L, Huang S (2008) Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med 45:1035–1044

    Article  CAS  PubMed  Google Scholar 

  33. Xu B, Chen S, Luo Y, Chen Z, Liu L, Zhou H et al (2011) Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS ONE 6:e19052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen L, Xu B, Liu L, Luo Y, Yin J, Zhou H et al (2010) Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Lab Invest 90:762–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Whitfield J, Neame SJ, Paquet L, Bernard O, Ham J (2001) Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 29:629–643

    Article  CAS  PubMed  Google Scholar 

  36. Liu L, Luo Y, Chen L, Shen T, Xu B, Chen W et al (2010) Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. J Biol Chem 285:38362–38373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Biederbick A, Kern HF, Elsasser HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66:3–14

    CAS  PubMed  Google Scholar 

  38. Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114:3619–3629

    Article  CAS  PubMed  Google Scholar 

  39. Wang Q, Zhu J, Zhang K, Jiang C, Wang Y, Yuan Y et al (2013) Induction of cytoprotective autophagy in PC-12 cells by cadmium. Biochem Biophys Res Commun 438:186–192

    Article  CAS  PubMed  Google Scholar 

  40. Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P (2012) Autophagy: for better or for worse. Cell Res 22:43–61

    Article  CAS  PubMed  Google Scholar 

  41. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    Article  CAS  PubMed  Google Scholar 

  42. Liu C, Zhang R, Sun C, Zhang H, Xu C, Liu W et al (2015) Resveratrol prevents cadmium activation of Erk1/2 and JNK pathways from neuronal cell death via protein phosphatases 2A and 5. J Neurochem 135:466–478

    Article  CAS  PubMed  Google Scholar 

  43. Ge KL, Chen WF, Xie JX, Wong MS (2010) Ginsenoside Rg1 protects against 6-OHDA-induced toxicity in MES23.5 cells via Akt and ERK signaling pathways. J Ethnopharmacol 127:118–123

    Article  CAS  PubMed  Google Scholar 

  44. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T et al (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461:654–658

    Article  CAS  PubMed  Google Scholar 

  45. Chang TK, Shravage BV, Hayes SD, Powers CM, Simin RT, Wade Harper J et al (2013) Uba1 functions in Atg7- and Atg3-independent autophagy. Nat Cell Biol 15:1067–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ra EA, Lee TA, Won Kim S, Park A, Choi HJ, Jang I et al (2016) TRIM31 promotes Atg5/Atg7-independent autophagy in intestinal cells. Nat Commun 7:11726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Swerdlow S, Distelhorst CW (2007) Bcl-2-regulated calcium signals as common mediators of both apoptosis and autophagy. Dev Cell 12:178–179

    Article  CAS  PubMed  Google Scholar 

  48. Hoyer-Hansen M, Jaattela M (2007) AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3:381–383

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the grants from National Natural Science Foundation of China (No. 81873781; LC), NIH (CA115414; SH), Project for the Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD-14KJB180010; LC), Natural Science Foundation of Jiangsu Province (BK20180562; CX), and American Cancer Society (RSG-08-135-01-CNE; SH).

Author information

Authors and Affiliations

Authors

Contributions

LC and SH conceived the project. CX, SC and LC designed the experiments. CX, SC and XW performed the experiments. XC, SC, XW, SH and LC analyzed the data. XC, MX, HZ, XD, RZ, XC and WG contributed reagents/materials/analysis tools. CX, SH and LC wrote the paper.

Corresponding authors

Correspondence to Shile Huang or Long Chen.

Ethics declarations

Conflict of interest

The authors declared that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Chen, S., Xu, M. et al. Cadmium Impairs Autophagy Leading to Apoptosis by Ca2+-Dependent Activation of JNK Signaling Pathway in Neuronal Cells. Neurochem Res 46, 2033–2045 (2021). https://doi.org/10.1007/s11064-021-03341-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03341-x

Keywords

Navigation