Skip to main content
Log in

Acute Valproate Exposure Induces Sex-Specific Changes in Steroid Hormone Metabolism in the Cerebral Cortex of Juvenile Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Valproic acid (VPA), an antiepileptic and mood stabilizer, modulates neurotransmission and gene expression by inhibiting histone deacetylase activity. It is reported that VPA may affects the steroid hormone level. In this study, VPA-induced acute metabolic alterations were investigated using liquid chromatography-tandem mass spectrometry in prepubertal mice brain. In VPA-treated (400 mg/kg in saline solution, intraperitoneal) mice, cortisol levels were increased (female: P < 0.004, male: P < 0.003) and 17β-estradiol levels were decreased (Both P < 0.03). Furthermore, in the VPA-treated male mice, dihydrotestosterone levels were increased (P < 0.02) and testosterone were decreased (P < 0.002). The 4-hydroxylase activity was upregulated in the female VPA-treated mice (P < 0.01) and the 5α-reductase activity was increased in the male VPA-treated mice (P < 0.003). These results indicate sex specific differences in VPA-induced steroid metabolism in the brain cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data and materials are available upon requests.

Code Availability

Not applicable.

References

  1. Godin Y, Heiner L, Mark J, Mandel P (1969) Effects of DI-n‐propylacetate, an anticonvulsive compound, on GABA metabolism. J Neurochem 16:869–873. https://doi.org/10.1111/j.1471-4159.1969.tb08975.x

    Article  CAS  PubMed  Google Scholar 

  2. Löscher W (1993) Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 18:485–502. https://doi.org/10.1007/bf00967253

    Article  PubMed  Google Scholar 

  3. Luder AS, Parks JK, Frerman F, Parker WD (1990) Inactivation of beef brain alpha-ketoglutarate dehydrogenase complex by valproic acid and valproic acid metabolites. Possible mechanism of anticonvulsant and toxic actions. J Clin Invest 86:1574–1581. https://doi.org/10.1172/JCI114877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCormick DA (1989) GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027. https://doi.org/10.1152/jn.1989.62.5.1018

    Article  CAS  PubMed  Google Scholar 

  5. Stratton MS, Searcy BT, Tobet SA (2011) GABA regulates corticotropin releasing hormone levels in the paraventricular nucleus of the hypothalamus in newborn mice. Physiol Behav 104:327. https://doi.org/10.1016/J.PHYSBEH.2011.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tran V, Hatalski CG, Yan XX, Baram TZ (1999) Effects of blocking GABA degradation on corticotropin-releasing hormone gene expression in selected brain regions. Epilepsia 40:1190–1197

    Article  CAS  Google Scholar 

  7. Miller L, Foradori CD, Lalmansingh AS et al (2011) Histone deacetylase 1 (HDAC1) participates in the down-regulation of corticotropin releasing hormone gene (crh) expression. Physiol Behav 104:312–320. https://doi.org/10.1016/J.PHYSBEH.2011.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang L, Li H, Li S, Zou X (2016) Reproductive and metabolic abnormalities in women taking valproate for bipolar disorder: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 202:26–31. https://doi.org/10.1016/j.ejogrb.2016.04.038

    Article  PubMed  Google Scholar 

  9. Xiaotian X, Hengzhong Z, Yao X et al (2013) Effects of antiepileptic drugs on reproductive endocrine function, sexual function and sperm parameters in Chinese Han men with epilepsy. J Clin Neurosci 20:1492–1497. https://doi.org/10.1016/j.jocn.2012.11.028

    Article  CAS  PubMed  Google Scholar 

  10. Glister C, Satchell L, Michael AE et al (2012) The anti-epileptic drug valproic acid (VPA) inhibits steroidogenesis in bovine theca and granulosa cells in vitro. PLoS One 7:e49553. https://doi.org/10.1371/journal.pone.0049553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brion L, Gorostizaga A, Gómez NV et al (2011) Valproic acid alters mitochondrial cholesterol transport in Y1 adrenocortical cells. Toxicol Vitr 25:7–12. https://doi.org/10.1016/J.TIV.2010.08.006

    Article  CAS  Google Scholar 

  12. Pesaresi M, Maschi O, Giatti S et al (2010) Sex differences in neuroactive steroid levels in the nervous system of diabetic and non-diabetic rats. Horm Behav 57:46–55. https://doi.org/10.1016/j.yhbeh.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  13. Göttlicher M, Minucci S, Zhu P et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978. https://doi.org/10.1093/emboj/20.24.6969

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bilo L, Meo R (2008) Polycystic ovary syndrome in women using valproate: a review. Gynecol Endocrinol 24:562–570. https://doi.org/10.1080/09513590802288259

    Article  PubMed  Google Scholar 

  15. Pennell PB (2009) Hormonal aspects of epilepsy. Neurol Clin 27:941–965

    Article  Google Scholar 

  16. Taubøll E, Sveberg L, Svalheim S (2015) Interactions between hormones and epilepsy. Seizure 28:3–11

    Article  Google Scholar 

  17. Banks WA (2012) Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 153:4111–4119. https://doi.org/10.1210/en.2012-1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Diotel N, Charlier TD, Lefebvre d’Hellencourt C et al (2018) Steroid transport, local synthesis, and signaling within the brain: roles in neurogenesis, neuroprotection, and sexual behaviors. Front Neurosci 12:84. https://doi.org/10.3389/fnins.2018.00084

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mellon SH, Vaudry H (2001) Biosynthesis of neurosteroids and regulation of their sysnthesis. Int Rev Neurobiol 46:33–78. https://doi.org/10.1016/S0074-7742(01)46058-2

    Article  CAS  PubMed  Google Scholar 

  20. Akwa Y, Morfin RF, Robel P, Baulieu EE (1992) Neurosteroid metabolism. 7 alpha-Hydroxylation of dehydroepiandrosterone and pregnenolone by rat brain microsomes. Biochem J 288(Pt 3):959–964. https://doi.org/10.1042/BJ2880959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baulieu EE (1991) Neurosteroids: a new function in the brain. Biol Cell 71:3–10

    Article  CAS  Google Scholar 

  22. Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322

    Article  CAS  Google Scholar 

  23. Taubøll E, Gregoraszczuk EL, Kołodziej A et al (2003) Valproate inhibits the conversion of testosterone to estradiol and acts as an apoptotic agent in growing porcine ovarian follicular cells. Epilepsia 44:1014–1021. https://doi.org/10.1046/j.1528-1157.2003.60702.x

    Article  PubMed  Google Scholar 

  24. Taubøll E, Wójtowicz AK, Ropstad E, Gregoraszczuk EL (2002) Valproate irreversibly alters steroid secretion patterns from porcine follicular cells in vitro. Reprod Toxicol 16:319–325. https://doi.org/10.1016/S0890-6238(02)00020-5

    Article  PubMed  Google Scholar 

  25. Von Krogh K, Harjen H, Almås C et al (2010) The effect of valproate and levetiracetam on steroidogenesis in forskolin-stimulated H295R cells. Epilepsia 51:2280–2288. https://doi.org/10.1111/j.1528-1167.2010.02702.x

    Article  Google Scholar 

  26. Gregoraszczuk E, Wójtowicz AK, Taubøll E, Ropstad E (2000) Valproate-induced alterations in testosterone, estradiol and progesterone secretion from porcine follicular cells isolated from small- and medium-sized ovarian follicles. Seizure 9:480–485. https://doi.org/10.1053/SEIZ.2000.0443

    Article  CAS  PubMed  Google Scholar 

  27. Inada H, Chihara K, Yamashita A et al (2012) Evaluation of ovarian toxicity of sodium valproate (VPA) using cultured rat ovarian follicles. J Toxicol Sci 37:587–594. https://doi.org/10.2131/jts.37.587

    Article  CAS  PubMed  Google Scholar 

  28. Sukhorum W, Iamsaard S (2017) Changes in testicular function proteins and sperm acrosome status in rats treated with valproic acid. Reprod Fertil Dev 29:1585. https://doi.org/10.1071/RD16205

    Article  CAS  PubMed  Google Scholar 

  29. Tringali G, Aubry JM, Moscianese K et al (2004) Valproic acid inhibits corticotropin-releasing factor synthesis and release from the rat hypothalamus in vitro: evidence for the involvement of GABAergic neurotransmission. J Psychiatry Neurosci 29:459–466

    PubMed  PubMed Central  Google Scholar 

  30. Stout S, Owens MJ, Lindsey KP et al (2001) Effects of sodium valproate on corticotropin-releasing factor systems in rat brain. Neuropsychopharmacology 24:624–631. https://doi.org/10.1016/S0893-133X(00)00243-8

    Article  CAS  PubMed  Google Scholar 

  31. Gilmor ML, Skelton KH, Nemeroff CB, Owens MJ (2003) The effects of chronic treatment with the mood stabilizers valproic acid and lithium on corticotropin-releasing factor neuronal systems. J Pharmacol Exp Ther 305:434–439. https://doi.org/10.1124/jpet.102.045419

    Article  CAS  PubMed  Google Scholar 

  32. Hsing AW, Stanczyk FZ, Bélanger A et al (2007) Reproducibility of serum sex steroid assays in men by RIA and mass spectrometry. Cancer Epidemiol Biomarkers Prev 16:1004–1008. https://doi.org/10.1158/1055-9965.EPI-06-0792

    Article  CAS  PubMed  Google Scholar 

  33. Wood L, Ducroq DH, Fraser HL et al (2008) Measurement of urinary free cortisol by tandem mass spectrometry and comparison with results obtained by gas chromatography-mass spectrometry and two commercial immunoassays. Ann Clin Biochem 45:380–388. https://doi.org/10.1258/acb.2007.007119

    Article  CAS  PubMed  Google Scholar 

  34. Dubey RK, Jackson EK (2001) Invited review: cardiovascular protective effects of 17β-estradiol metabolites. J Appl Physiol 91:1868–1883. https://doi.org/10.1152/jappl.2001.91.4.1868

    Article  CAS  PubMed  Google Scholar 

  35. Weaver ICG, Meaney MJ, Szyf M (2006) Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci 103:3480–3485. https://doi.org/10.1073/pnas.0507526103

    Article  CAS  PubMed  Google Scholar 

  36. Murray EK, Hien A, de Vries GJ, Forger NG (2009) Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology 150:4241–4247. https://doi.org/10.1210/en.2009-0458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsai H-W, Grant PA, Rissman EF (2009) Sex differences in histone modifications in the neonatal mouse brain. Epigenetics 4:47–53

    Article  CAS  Google Scholar 

  38. Bell MR (2018) Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans. Endocrinology 159:2596–2613. https://doi.org/10.1210/en.2018-00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by both the National Research Foundation of Korea(NRF) funded by the Ministry of Education (Grant No. 2017R1D1A3B03033533) and Korea Research Institute of Chemical Technology (Grant No. KK1807-C32 and SI1805-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ae Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was approved by the Institutional Animal Care and Use Committee of Eulji University (EUIACUC17-12).

Informed Consent

Not applicable.

Research Involving Human and Animal Participants

This study was not for human study and consents are not necessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, SH., Chai, J.H., Chang, SY. et al. Acute Valproate Exposure Induces Sex-Specific Changes in Steroid Hormone Metabolism in the Cerebral Cortex of Juvenile Mice. Neurochem Res 45, 2044–2051 (2020). https://doi.org/10.1007/s11064-020-03065-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03065-4

Keywords

Navigation