Skip to main content

Advertisement

Log in

Transplantation of IFN-γ Primed hUCMSCs Significantly Improved Outcomes of Experimental Autoimmune Encephalomyelitis in a Mouse Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstracts

The aim of this study was to investigate potential therapeutic effects of IFN-γ primed human umbilical cord mesenchymal stem cell (IFN-γ-hUCMSCs) transplantation on experimental autoimmune encephalomyelitis (EAE) in mice. In this study, EAE mouse model was established by MOG35-55 immunization method. Outcomes of the EAE mice in terms of body weight and clinical symptoms were analyzed. Electromyography (EMG) was performed to evaluate nerve conduction. ELISA was applied to quantify inflammatory cytokine levels in serum. Our results showed that IFN-γ could up-regulate protein expression of indoleamine 2, 3-dioxygenease 1 (IDO1), an important molecule released by MSCs to exert their immune suppressive activity (p < 0.01). In this study treatment efficacy for EAE was compared between transplantation of hUCMSCs alone and the IFN-γ-hUCMSCs which were cultured in the presence of IFN-γ for 48 h prior to be harvested for transplantation. Compared with hUCMSCs alone and control (PBS transfusion) group, transplantation of the IFN-γ-hUCMSCs could significantly alleviate the body weight loss and clinical symptoms of EAE mice (p < 0.05). Consistently EMG latency was significantly improved in treatment groups (p < 0.001), and the IFN-γ-hUCMSCs group was even better than the hUCMSCs group (p < 0.05). Moreover, the concentrations of IL-17A and TNF-α in serum of the mice treated by IFN-γ-hUCMSCs were significantly lower than hUCMSCs alone and controls, respectively (p < 0.05). In few of the roles of IL-17A and TNF-α in the pathogenesis of EAE, IFN-γ-hUCMSCs treatment associated-suppression of IL-17A and TNF-α expression may contribute in part to their therapeutic effects on EAE. In sum, our study highlights a great clinical potential of IFN-γ-hUCMSCs for multiple sclerosis (MS) treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li J, Chen Y, Chen Z, Huang Y, Yang D, Su Z, Weng Y, Li X, Zhang X (2017) Therapeutic effects of human adipose tissue-derived stem cell (hADSC) transplantation on experimental autoimmune encephalomyelitis (EAE) mice. Sci Rep 7:42695. https://doi.org/10.1038/srep42695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yamout B, Sahraian M, Bohlega S, Al-Jumah M, Goueider R, Dahdaleh M, Inshasi J, Hashem S, Alsharoqi I, Khoury S, Alkhawajah M, Koussa S, Al Khaburi J, Almahdawi A, Alsaadi T, Slassi E, Daodi S, Zakaria M, Alroughani R (2019) Consensus recommendations for the diagnosis and treatment of multiple sclerosis: 2019 revisions to the MENACTRIMS guidelines. Mult Scler Relat Disord 37:101459. https://doi.org/10.1016/j.msard.2019.101459

    Article  PubMed  Google Scholar 

  3. Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, Rocca MA (2018) Multiple sclerosis. Nat Rev Dis Primers 4:43. https://doi.org/10.1038/s41572-018-0041-4

    Article  PubMed  Google Scholar 

  4. Oh J, Vidal-Jordana A, Montalban X (2018) Multiple sclerosis: clinical aspects. Curr Opin Neurol 31:752–759. https://doi.org/10.1097/wco.0000000000000622

    Article  PubMed  Google Scholar 

  5. Nicholas JA, Electricwala B, Lee LK, Johnson KM (2019) Burden of relapsing-remitting multiple sclerosis on workers in the US: a cross-sectional analysis of survey data. BMC Neurol 19(1):258. https://doi.org/10.1186/s12883-019-1495-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Constantinescu CS, Farooqi N, O'Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lunin SM, Khrenov MO, Glushkova OV, Parfenyuk SB, Novoselova TV, Novoselova EG (2019) Protective effect of PBCA nanoparticles loaded with thymulin against the relapsing-remitting form of experimental autoimmune encephalomyelitis in mice. Int J Mol Sci 20(21):5374. https://doi.org/10.3390/ijms20215374

    Article  CAS  PubMed Central  Google Scholar 

  8. Seifert HA, Gerstner G, Kent G, Vandenbark AA, Offner H (2019) Estrogen-induced compensatory mechanisms protect IL-10-deficient mice from developing EAE. J Neuroinflamm 16(1):195. https://doi.org/10.1186/s12974-019-1588-z

    Article  CAS  Google Scholar 

  9. Garg N, Smith TW (2015) An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav 5(9):e00362. https://doi.org/10.1002/brb3.362

    Article  PubMed  PubMed Central  Google Scholar 

  10. Holm Hansen R, Højsgaard Chow H, Christensen JR, Sellebjerg F, von Essen MR (2019) Dimethyl fumarate therapy reduces memory T cells and the CNS migration potential in patients with multiple sclerosis. Mult Scler Relat Disord 37:101451. https://doi.org/10.1016/j.msard.2019.101451

    Article  PubMed  Google Scholar 

  11. Baecher-Allan C, Kaskow BJ, Weiner HL (2018) Multiple sclerosis: mechanisms and immunotherapy. Neuron 97(4):742–768. https://doi.org/10.1016/j.neuron.2018.01.021

    Article  CAS  PubMed  Google Scholar 

  12. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13(10):1173–1175. https://doi.org/10.1038/nm1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Wijmeersch B, Singer BA, Boster A, Broadley S, Fernández Ó, Freedman MS, Izquierdo G, Lycke J, Pozzilli C, Sharrack B, Steingo B, Wiendl H, Wray S, Ziemssen T, Chung L, Margolin DH, Thangavelu K, Vermersch P (2019) Efficacy of alemtuzumab over 6 years in relapsing-remitting multiple sclerosis patients who relapsed between courses 1 and 2: Post hoc analysis of the CARE-MS studies. Mult Scler (Houndmills, Basingstoke, England) (undefined):1352458519881759. doi:10.1177/1352458519881759

  14. Buscarinu MC, Fornasiero A, Pellicciari G, Reniè R, Landi AC, Bozzao A, Cappelletti C, Bernasconi P, Ristori G, Salvetti M (2019) Autoimmune encephalitis and CSF anti-GluR3 antibodies in an MS patient after alemtuzumab treatment. Brain Sci 9(11):299. https://doi.org/10.3390/brainsci9110299

    Article  PubMed Central  Google Scholar 

  15. Rafieemehr H, Kheyrandish M, Soleimani M (2015) Neuroprotective effects of transplanted mesenchymal stromal cells-derived human umbilical cord blood neural progenitor cells in EAE. Iran J Allergy Asthma Immunol 14(6):596–604

    PubMed  Google Scholar 

  16. Ding M, Shen Y, Wang P, Xie Z, Xu S, Zhu Z, Wang Y, Lyu Y, Wang D, Xu L, Bi J, Yang H (2018) Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in alzheimer's disease. Neurochem Res 43(11):2165–2177. https://doi.org/10.1007/s11064-018-2641-5

    Article  CAS  PubMed  Google Scholar 

  17. Sivanathan KN, Gronthos S, Rojas-Canales D, Thierry B, Coates PT (2014) Interferon-gamma modification of mesenchymal stem cells: implications of autologous and allogeneic mesenchymal stem cell therapy in allotransplantation. Stem Cell Rev Rep 10(3):351–375. https://doi.org/10.1007/s12015-014-9495-2

    Article  CAS  PubMed  Google Scholar 

  18. O'Neill EJ, Day MJ, Wraith DC (2006) IL-10 is essential for disease protection following intranasal peptide administration in the C57BL/6 model of EAE. J Neuroimmunol 178(1):1–8. https://doi.org/10.1016/j.jneuroim.2006.05.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422(6933):688–694. https://doi.org/10.1038/nature01552

    Article  CAS  PubMed  Google Scholar 

  20. Mennan C, Garcia J, Roberts S, Hulme C, Wright K (2019) A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells. Stem Cell Res Ther 10(1):99. https://doi.org/10.1186/s13287-019-1202-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x

    Article  CAS  PubMed  Google Scholar 

  22. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506. https://doi.org/10.1182/blood-2007-02-069716

    Article  CAS  PubMed  Google Scholar 

  23. Al-Massri KF, Ahmed LA, El-Abhar HS (2019) Mesenchymal stem cells in chemotherapy-induced peripheral neuropathy: a new challenging approach which requires further investigations. J Tissue Eng Regen Med 14(1):108–122. https://doi.org/10.1002/term.2972

    Article  CAS  PubMed  Google Scholar 

  24. Meng M, Liu Y, Wang W, Wei C, Liu F, Du Z, Xie Y, Tang W, Hou Z, Li Q (2018) Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis. Am J Trans Res 10(1):212–223

    CAS  Google Scholar 

  25. François M, Romieu-Mourez R, Li M, Galipeau J (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther: J Am Soc Gene Ther 20(1):187–195. https://doi.org/10.1038/mt.2011.189

    Article  CAS  Google Scholar 

  26. Li H, Deng Y, Liang J, Huang F, Qiu W, Zhang M, Long Y, Hu X, Lu Z, Liu W, Zheng SG (2019) Mesenchymal stromal cells attenuate multiple sclerosis IDO-dependent increasing the suppressive proportion of CD5 + IL-10 + B cells. Am J Trans Res 11(9):5673–5688

    CAS  Google Scholar 

  27. Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R, Servillo G, Brunacci C, Calvitti M, Bicciato S, Mazza EM, Boon L, Grassi F, Fioretti MC, Fallarino F, Puccetti P, Grohmann U (2011) Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 12(9):870–878. https://doi.org/10.1038/ni.2077

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81870848); Rong Xiang Regenerative Medicine Foundation; and Youth Talent Fund of the Second Hospital of Shandong University (2018YT37).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhong Bi or Chengyun Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest regarding this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liu, X., Liu, L. et al. Transplantation of IFN-γ Primed hUCMSCs Significantly Improved Outcomes of Experimental Autoimmune Encephalomyelitis in a Mouse Model. Neurochem Res 45, 1510–1517 (2020). https://doi.org/10.1007/s11064-020-03009-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03009-y

Keywords

Navigation