Skip to main content

Advertisement

Log in

Icariin Ameliorates Amyloid Pathologies by Maintaining Homeostasis of Autophagic Systems in Aβ1–42-Injected Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Macroautophagy, a sole pathway for dysfunctional organelles or aggregated proteins turnover, has been implicated in the early development of Alzheimer’s disease (AD). Previous studies have found that reversal of autophagy dysfunction in APP transgenic mice ameliorates amyloid pathologies. Icariin (ICA), the main component from traditional Chinese herb Epimedium brevicornu Maxim., can reduce accumulations of amyloid-β (Aβ) peptide in vivo and in vitro, but the mechanism remains unclear. Here, we explored the effects of ICA on autophagy-lysosomal pathway in intracerebroventricular (icv) injection of human Aβ1–42 peptide rats. We demonstrated that feeding the rats with ICA (30 mg/kg, 60 mg/kg and 90 mg/kg rat, per os) for 4 weeks rescued the Aβ1–42-induced spatial memory impairments, reduced endogenous rat Aβ42 tested by ELISA and decreased Aβ accumulation using 6E10 antibody. Furthermore, Aβ1–42 induced strong autophagy response, however ICA decreased the levels of microtubule-associated protein 1 light chain 3 (LC3) II/LC3I, Beclin1, Cathepsin D (Cat D) and brain lysosomal Cathepsin D activity. We also observed that ICA enhanced the phosphorylation of protein kinase B (PKB/AKT) and p70 ribosomal protein S6 kinase (p70S6K). In addition, ICA arrested Aβ1–42-induced cells loss, mitochondrias damage, nuclear membranes unclear and abundant nucleas chromatin agglutinates in hippocampus, lessened the expression of Cleaved-caspase-3, brain oxidative stress, astroglial activation. These findings suggest that ICA can ameliorate amyloid pathologies with improving autophagy-lysosome function and Chinese materia medica may be potential for AD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52(4):487–501. https://doi.org/10.1016/0092-8674(88)90462-x

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–765. https://doi.org/10.1152/physrev.2001.81.2.741

    Article  CAS  PubMed  Google Scholar 

  3. Price DL, Tanzi RE, Borchelt DR, Sisodia SS (1998) Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 32:461–493. https://doi.org/10.1146/annurev.genet.32.1.461

    Article  CAS  PubMed  Google Scholar 

  4. Neve RL, McPhie DL, Chen Y (2000) Alzheimer’s disease: a dysfunction of the amyloid precursor protein. Brain Res 886(1–2):54–66. https://doi.org/10.1016/s0006-8993(00)02869-9

    Article  CAS  PubMed  Google Scholar 

  5. Wilcock GK, Esiri MM (1982) Plaques, tangles and dementia. A quantitative study. J Neurol Sci 56(2–3):43–356. https://doi.org/10.1016/0022-510x(82)90155-1

    Article  Google Scholar 

  6. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hugman B (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639. https://doi.org/10.1212/wnl.42.3.631

    Article  CAS  PubMed  Google Scholar 

  7. Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1996) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96(6):3228–3233. https://doi.org/10.1073/pnas.96.6.3228

    Article  Google Scholar 

  8. Guillozet AL, Weintraub S, Mash DC, Mesulam MM (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60(5):729–736. https://doi.org/10.1001/archneur.60.5.729

    Article  PubMed  Google Scholar 

  9. Koistinaho M, Ort M, Cimadevilla JM, Vondrous R, Cordell B, Koistinaho J, Bures J, Higgins LS (2001) Specific spatial learning deficits become severe with age in beta -amyloid precursor protein transgenic mice that harbor diffuse beta -amyloid deposits but do not form plaques. Proc Natl Acad Sci USA 98(25):14675–14680. https://doi.org/10.1073/pnas.261562998

    Article  CAS  PubMed  Google Scholar 

  10. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509. https://doi.org/10.1038/nrn2168

    Article  CAS  PubMed  Google Scholar 

  11. Hughes B, Herron CE (2019) Cannabidiol reverses deficits in hippocampal LTP in a model of Alzheimer’s disease. Neurochem Res 44(3):703–713. https://doi.org/10.1007/s11064-018-2513-z

    Article  CAS  PubMed  Google Scholar 

  12. Stéphan A, Laroche S, Davis S (2001) Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci 21(15):5703–5714. https://doi.org/10.1523/jneurosci.21-15-05703.2001

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee SJ, Liyanage U, Bickel PE, Xia W, Lansbury PT Jr, Kosik KS (1998) A detergent-insoluble membrane compartment contains A beta in vivo. Nat Med 4(6):730–734. https://doi.org/10.1038/nm0698-730

    Article  CAS  PubMed  Google Scholar 

  14. Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277(35):32046–32053. https://doi.org/10.1074/jbc.m201750200

    Article  CAS  PubMed  Google Scholar 

  15. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95(11):6448–6453. https://doi.org/10.1073/pnas.95.11.6448

    Article  CAS  PubMed  Google Scholar 

  16. Malm T, Ort M, Tähtivaara L, Jukarainen N, Goldsteins G, Puoliväli J, Nurmi A, Pussinen R, Ahtoniemi T, Miettinen TK, Kanninen K, Leskinen S, Vartiainen N, Yrjänheikki J, Laatikainen R, Harris-White ME, Koistinaho M, Frautschy SA, Bures J, Koistinaho J (2006) beta-Amyloid infusion results in delayed and age-dependent learning deficits without role of inflammation or beta-amyloid deposits. Proc Natl Acad Sci USA 103(23):8852–8857. https://doi.org/10.1073/pnas.0602896103

    Article  CAS  PubMed  Google Scholar 

  17. Nabeshima T, Nitta A (1994) Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J Exp Med 174(3):241–249. https://doi.org/10.1620/tjem.174.241

    Article  CAS  PubMed  Google Scholar 

  18. Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33(7):317–325. https://doi.org/10.1016/j.tins.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  19. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899. https://doi.org/10.1038/nature02263

    Article  CAS  PubMed  Google Scholar 

  20. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721. https://doi.org/10.1126/science.290.5497.1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120(2):159–162. https://doi.org/10.1016/j.cell.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  22. Eskelinen EL (2005) Maturation of autophagic vacuoles in mammalian cells. Autophagy 1(1):1–10. https://doi.org/10.4161/auto.1.1.1270

    Article  CAS  PubMed  Google Scholar 

  23. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120(Pt 23):4081–4091. https://doi.org/10.1242/jcs.019265

    Article  CAS  PubMed  Google Scholar 

  24. Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, Cuervo AM, Nixon RA (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for β-amyloid peptide overproduction and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36(12):2531–2540. https://doi.org/10.1016/j.biocel.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  25. Ułamek-Kozioł M, Furmaga-Jabłońska W, Januszewski S, Brzozowska J, Sciślewska M, Jabłoński M, Pluta R (2013) Neuronal autophagy: self-eating or self-cannibalism in Alzheimer’s disease. Neurochem Res 38(9):1769–1773. https://doi.org/10.1007/s11064-013-1082-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889. https://doi.org/10.1038/nature04724

    Article  CAS  Google Scholar 

  27. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884. https://doi.org/10.1038/nature04723

    Article  CAS  PubMed  Google Scholar 

  28. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, Pawlik M, Peterhoff CM, Yang AJ, Wilson DA, St George-Hyslop P, Westaway D, Mathews PM, Levy E, Cuervo AM, Nixon RA (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134(Pt 1):258–277. https://doi.org/10.1093/brain/awq341

    Article  PubMed  Google Scholar 

  29. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199. https://doi.org/10.1172/JCI33585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma HP, Ming LG, Ge BF, Zhai YK, Song P, Xian CJ, Chen KM (2011) Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. J Cell Biochem 112(3):916–923. https://doi.org/10.1002/jcb.23007

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Zhang X, Wang H, Qi L, Lou Y (2007) Neuroprotective effects of icaritin against beta amyloid-induced neurotoxicity in primary cultured rat neuronal cells via estrogen-dependent pathway. Neuroscience 145(3):911–922. https://doi.org/10.1016/j.neuroscience.2006.12.059

    Article  CAS  PubMed  Google Scholar 

  32. Xu CQ, Liu BJ, Wu JF, Xu YC, Duan XH, Cao YX, Dong JC (2010) Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3 K/Akt and NF-κB signaling pathway. Eur J Pharmacol 642(1–3):146–153. https://doi.org/10.1016/j.ejphar.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  33. Zhou J, Wu J, Chen X, Fortenbery N, Eksioglu E, Kodumudi KN, Pk EB, Dong J, Djeu JY, Wei S (2011) Icariin and its derivative, ICT, exert anti- inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions. Int Immunopharmacol 11(7):887–895. https://doi.org/10.1016/j.intimp.2011.01.007

    Article  CAS  PubMed Central  Google Scholar 

  34. Wu B, Chen Y, Huang J, Ning Y, Bian Q, Shan Y, Cai W, Zhang X, Shen Z (2012) Icariin improves cognitive deficits and activates quiescent neural stem cells in aging rats. J Ethnopharmacol 142(3):746–753. https://doi.org/10.1016/j.jep.2012.05.056

    Article  CAS  PubMed  Google Scholar 

  35. Nie J, Luo Y, Huang XN, Gong QH, Wu Q, Shi JS (2010) Icariin inhibits β-amyloid peptide segment 25-35 induced expression of beta-secretase in rat hippocampus. Eur J Pharmacol 626(2–3):213–218. https://doi.org/10.1016/j.ejphar.2009.09.039

    Article  CAS  PubMed  Google Scholar 

  36. He XL, Zhou WQ, Bi MG, Du GH (2010) Neuroprotective effects of icariin on memory impairment and neurochemical deficits in senescence-accelerated mouse prone 8 (SAMP8) mice. Brain Res 1334:73–83. https://doi.org/10.1016/j.brainres.2010.03.084

    Article  CAS  PubMed  Google Scholar 

  37. Urano T, Tohda C (2010) Icariin improves memory impairment in Alzheimer’s disease model mice (5xFAD) and attenuates amyloid β-induced neurite atrophy. Phytother Res 24(11):1658–1663. https://doi.org/10.1002/ptr.3183

    Article  CAS  PubMed  Google Scholar 

  38. Zeng KW, Ko H, Yang HO, Wang XM (2010) Icariin attenuates β-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells. Neuropharmacology 59(6):542–550. https://doi.org/10.1016/j.neuropharm.2010.07.020

    Article  CAS  PubMed  Google Scholar 

  39. Sheng C, Xu P, Zhou K, Deng D, Zhang C, Wang Z (2017) Icariin attenuates synaptic and cognitive deficits in an Aβ1–42-induced rat model of Alzheimer’s disease. Biomed Res Int 2017:7464872. https://doi.org/10.1155/2017/7464872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang L, Shen C, Chu J, Zhang R, Li Y, Li L (2014) Icariin decreases the expression of APP and BACE-1 and reduces the β-amyloid burden in an APP transgenic mouse model of Alzheimer’s disease. Int J Biol Sci 10(2):181–191. https://doi.org/10.7150/ijbs.6232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang GQ, Li DD, Huang C, Lu DS, Zhang C, Zhou SY, Liu J, Zhang F (2018) Icariin reduces dopaminergic neuronal loss and microglia-mediated inflammation in vivo and in vitro. Front Mol Neurosci 10:441. https://doi.org/10.3389/fnmol.2017.00441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu L, Li D, Chen C, Wang G, Shi J, Zhang F (2019) Activation of Nrf2 signaling by Icariin protects against 6-OHDA-induced neurotoxicity. Biotechnol Appl Biochem 10000:10000. https://doi.org/10.3389/fnmol.2017.00441

    Article  CAS  Google Scholar 

  43. Zeng J, Jiang X, Hu XF, Ma RH, Chai GS, Sun DS, Xu ZP, Li L, Bao J, Feng Q, Hu Y, Chu J, Chai DM, Hong XY, Wang JZ, Liu GP (2016) Spatial training promotes short-term survival and neuron-like differentiation of newborn cells in Aβ1–42-injected rats. Neurobiol Aging 45:64–75. https://doi.org/10.1016/j.neurobiolaging.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  44. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu H, Wang JZ (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem 87(6):1333–1344. https://doi.org/10.1046/j.1471-4159.2003.02070.x

    Article  CAS  PubMed  Google Scholar 

  45. Jiang X, Tian Q, Wang Y, Zhou XW, Xie JZ, Wang JZ, Zhu LQ (2011) Acetyl-L-carnitine ameliorates spatial memory deficits induced by inhibition of phosphoinositol-3 kinase and protein kinase C. J Neurochem 118(5):864–878. https://doi.org/10.1111/j.1471-4159.2011.07355.x

    Article  CAS  PubMed  Google Scholar 

  46. Xu S, Yu J, Zhan J, Yang L, Guo L, Xu Y (2017) Pharmacokinetics, tissue distribution, and metabolism study of icariin in rat. Biomed Res Int 2017:4684962. https://doi.org/10.1155/2017/4684962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang X, Jia LW, Li XH, Cheng XS, Xie JZ, Ma ZW, Xu WJ, Liu Y, Yao Y, Du LL, Zhou XW (2013) Capsaicin ameliorates stress-induced Alzheimer’s disease-like pathological and cognitive impairments in rats. J Alzheimers Dis 35(1):91–105. https://doi.org/10.3233/JAD-121837

    Article  CAS  PubMed  Google Scholar 

  48. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88. https://doi.org/10.1007/978-1-59745-157-4_4

    Article  CAS  PubMed  Google Scholar 

  49. Hung SY, Huang WP, Liou HC, Fu WM (2009) Autophagy protects neuron from Abeta-induced cytotoxicity. Autophagy 5(4):502–510. https://doi.org/10.4161/auto.5.4.8096

    Article  CAS  PubMed  Google Scholar 

  50. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676. https://doi.org/10.1038/45257

    Article  CAS  PubMed  Google Scholar 

  51. Guglielmotto M, Monteleone D, Piras A, Valsecchi V, Tropiano M, Ariano S, Fornaro M, Vercelli A, Puyal J, Arancio O, Tabaton M, Tamagno E (2014) Aβ1–42 monomers or oligomers have different effects on autophagy and apoptosis. Autophagy 10(10):1827–1843. https://doi.org/10.4161/auto.30001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hong WK, Han EH, Kim DG, Ahn JY, Park JS, Han BG (2007) Amyloid-beta-peptide reduces the expression level of mitochondrial cytochrome oxidase subunits. Neurochem Res 32(9):1483–1488. https://doi.org/10.1007/s11064-007-9336-7

    Article  CAS  PubMed  Google Scholar 

  53. Chong YH, Shin YJ, Lee EO, Kayed R, Glabe CG, Tenner AJ (2006) ERK1/2 activation mediates Abeta oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. J Biol Chem 281(29):20315–20325. https://doi.org/10.1074/jbc.M601016200

    Article  CAS  PubMed  Google Scholar 

  54. Yin G, Li LY, Qu M, Luo HB, Wang JZ, Zhou XW (2011) Upregulation of AKT attenuates amyloid-β-induced cell apoptosis. J Alzheimers Dis 25(2):337–345. https://doi.org/10.3233/JAD-2011-110104

    Article  CAS  PubMed  Google Scholar 

  55. Jacobsen JS, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M, Martone R, Morrison JH, Pangalos MN, Reinhart PH, Bloom FE (2006) Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103(13):5161–5166. https://doi.org/10.1073/pnas.0600948103

    Article  CAS  PubMed  Google Scholar 

  56. Moreno-Flores MT, Salinero O, Wandosell F (1998) BetaA amyloid peptide (25-35) induced APP expression in cultured astrocytes. J Neurosci Res 52(6):661–671. https://doi.org/10.1002/(SICI)1097-4547(19980615)52:6%3c661:AID-JNR5%3e3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  57. Hardy J, Duff K, Hardy KG, Perez-Tur J, Hutton M (1998) Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to tau. Nat Neurosci 1(5):355–358. https://doi.org/10.1038/1565

    Article  CAS  PubMed  Google Scholar 

  58. Piccini A, Borghi R, Guglielmotto M, Tamagno E, Cirmena G, Garuti A, Pollero V, Cammarata S, Fornaro M, Messa M, Colombo L, Salmona M, Perry G, Tabaton M (2012) β-amyloid 1-42 induces physiological transcriptional regulation of BACE1. J Neurochem 122(5):1023–1031. https://doi.org/10.1111/j.1471-4159.2012.07834.x

    Article  CAS  PubMed  Google Scholar 

  59. Maloney B, Lahiri DK (2011) The Alzheimer’s amyloid β-peptide (Aβ) binds a specific DNA Aβ-interacting domain (AβID) in the APP, BACE1, and APOE promoters in a sequence-specific manner: characterizing a new regulatory motif. Gene 488(1–2):1–12. https://doi.org/10.1016/j.gene.2011.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bailey JA, Maloney B, Ge YW, Lahiri DK (2011) Functional activity of the novel Alzheimer’s amyloid β-peptide interacting domain (AβID) in the APP and BACE1 promoter sequences and implications in activating apoptotic genes and in amyloidogenesis. Gene 488(1–2):13–22. https://doi.org/10.1016/j.gene.2011.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ourdev D, Foroutanpay BV, Wang Y, Kar S (2015) The effect of Aβ1–42 oligomers on APP processing and Aβ1–40 generation in cultured U-373 astrocytes. Neurodegener Dis 15(6):361–368. https://doi.org/10.1159/000438923

    Article  CAS  PubMed  Google Scholar 

  62. Soura V, Stewart-Parker M, Williams TL, Ratnayaka A, Atherton J, Gorringe K, Tuffin J, Darwent E, Rambaran R, Klein W, Lacor P, Staras K, Thorpe J, Serpell LC (2012) Visualization of co-localization in Aβ42-administered neuroblastoma cells reveals lysosome damage and autophagosome accumulation related to cell death. Biochem J 441(2):579–590. https://doi.org/10.1042/BJ20110749

    Article  CAS  PubMed  Google Scholar 

  63. Hong Y, Liu Y, Zhang G, Wu H, Hou Y (2018) Progesterone suppresses Aβ42-induced neuroinflammation by enhancing autophagy in astrocytes. Int Immunopharmacol 54:336–343. https://doi.org/10.1016/j.intimp.2017.11.044

    Article  CAS  PubMed  Google Scholar 

  64. Yin Y, Zhao Y, Han S, Zhang N, Chen H, Wang X (2017) Autophagy-ERK1/2-involved disinhibition of hippocampal neurons contributes to the pre-synaptic toxicity induced by Aβ42 exposure. J Alzheimers Dis 59(3):851–869. https://doi.org/10.3233/JAD-170246

    Article  CAS  PubMed  Google Scholar 

  65. Chen FJ, Liu B, Wu Q, Liu J, Xu YY, Zhou SY, Shi JS (2019) Icariin delays brain aging in Senescence-Accelerated Mouse Prone 8 (SAMP8) model via inhibiting autophagy. J Pharmacol Exp Ther 369(1):121–128. https://doi.org/10.1124/jpet.118.253310

    Article  CAS  PubMed  Google Scholar 

  66. Tramutola A, Lanzillotta C, Di Domenico F (2017) Targeting mTOR to reduce Alzheimer-related cognitive decline: from current hits to future therapies. Expert Rev Neurother 17(1):33–45. https://doi.org/10.1080/14737175.2017.1244482

    Article  CAS  PubMed  Google Scholar 

  67. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135(Pt 7):2169–2177. https://doi.org/10.1093/brain/aws143

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C, Yankner BA, Scherzer CR, Yuan J (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 107(32):14164–14169. https://doi.org/10.1073/pnas.1009485107

    Article  PubMed  Google Scholar 

  69. Gao J, Deng Y, Yin C, Liu Y, Zhang W, Shi J, Gong Q (2017) Icariside II, a novel phosphodiesterase 5 inhibitor, protects against H2O2-induced PC12 cells death by inhibiting mitochondria-mediated autophagy. J Cell Mol Med 21(2):375–386. https://doi.org/10.1111/jcmm.12971

    Article  CAS  PubMed  Google Scholar 

  70. Teich AF, Sakurai M, Patel M, Holman C, Saeed F, Fiorito J, Arancio O (2016) PDE5 exists in human neurons and is a viable therapeutic target for neurologic disease. J Alzheimers Dis 52(1):295–302. https://doi.org/10.3233/JAD-151104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81303252, 81573865), Hubei Provincial Natural Science Foundation of China (2017CFB733) and China Postdoctoral Science Special Foundation (2016T90685).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Jiang or Ping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Chen, LL., Lan, Z. et al. Icariin Ameliorates Amyloid Pathologies by Maintaining Homeostasis of Autophagic Systems in Aβ1–42-Injected Rats. Neurochem Res 44, 2708–2722 (2019). https://doi.org/10.1007/s11064-019-02889-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02889-z

Keywords

Navigation