Skip to main content
Log in

Tissue Injury and Astrocytic Reaction, But Not Cognitive Deficits, Are Dependent on Hypoxia Duration in Very Immature Rats Undergoing Neonatal Hypoxia–Ischemia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Preterm birth and hypoxia–ischemia (HI) are major causes of neonatal death and neurological disabilities in newborns. The widely used preclinical HI model combines carotid occlusion with hypoxia exposure; however, the relationship between different hypoxia exposure periods with brain tissue loss, astrocyte reactivity and behavioral impairments following HI is lacking. Present study evaluated HI-induced behavioral and morphological consequences in rats exposed to different periods of hypoxia at postnatal day 3. Wistar rats of both sexes were assigned into four groups: control group, HI-120 min, HI-180 min and HI-210 min. Neurodevelopmental reflexes, exploratory abilities and cognitive function were assessed. At adulthood, tissue damage and reactive astrogliosis were measured. Animals exposed to HI-180 and HI-210 min had delayed neurodevelopmental reflexes compared to control group. Histological assessment showed tissue loss that was restricted to the ipsilateral hemisphere in lower periods of hypoxia exposure (120 and 180 min) but affected both hemispheres when 210 min was used. Reactive astrogliosis was increased only after 210 min of hypoxia. Interestingly, cognitive deficits were induced regardless the duration of hypoxia and there were correlations between behavioral parameters and cortex, hippocampus and corpus callosum volumes. These results show the duration of hypoxia has a close relationship with astrocytic response and tissue damage progression. Furthermore, the long-lasting cognitive memory deficit and its association with brain structures beyond the hippocampus suggests that complex anatomical changes should be involved in functional alterations taking place as hypoxia duration is increased, even when the cognitive impairment limit is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blencowe H, Cousens S, Chou D et al (2013) Born too soon: the global epidemiology of 15 million preterm births. Reprod Health 10:1–14. https://doi.org/10.1186/1742-4755-10-S1-S2

    Article  Google Scholar 

  2. Liu L, Johnson HL, Cousens S et al (2012) Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379:2151–2161. https://doi.org/10.1016/S0140-6736(12)60560-1

    Article  PubMed  Google Scholar 

  3. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124. https://doi.org/10.1016/S1474-4422(08)70294-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xiong F, Zhang L (2013) Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease. Front Neuroendocrinol 34:27–46

    Article  CAS  PubMed  Google Scholar 

  5. Clowry GJ, Basuodan R, Chan F (2014) What are the best animal models for testing early intervention in Cerebral Palsy? Front Neurol 5:1–17. https://doi.org/10.3389/fneur.2014.00258

    Article  Google Scholar 

  6. Jantzie LL, Corbett CJ, Berglass J et al (2014) Complex pattern of interaction between in utero hypoxia-ischemia and intra-amniotic inflammation disrupts brain development and motor function. J Neuroinflammation 11:131. https://doi.org/10.1186/1742-2094-11-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Teune MJ, Bakhuizen S, Bannerman CG et al (2011) A systematic review of severe morbidity in infants born late preterm. Am J Obstet Gynecol 205:374.e1–374.e9. https://doi.org/10.1016/j.ajog.2011.07.015

    Article  Google Scholar 

  8. Zhu LH, Bai X, Zhang N et al (2014) Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage. Brain Res 1563:13–21. https://doi.org/10.1016/j.brainres.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  9. Stadlin A, James A, Fiscus R et al (2003) Development of a postnatal 3-day-old rat model of mild hypoxic-ischemic brain injury. Brain Res 993:101–110. https://doi.org/10.1016/j.brainres.2003.08.058

    Article  CAS  PubMed  Google Scholar 

  10. Sizonenko SV, Sirimanne E, Mayall Y et al (2003) Selective cortical alteration after hypoxic-ischemic injury in the very immature rat brain. Pediatr Res 54:263–269. https://doi.org/10.1203/01.PDR.0000072517.01207.87

    Article  PubMed  Google Scholar 

  11. Tang G, Gudsnuk K, Kuo SH et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–1143. https://doi.org/10.1016/j.neuron.2014.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9(2):131–141

    Article  PubMed  Google Scholar 

  13. Patel SD, Pierce L, Ciardiello A et al (2015) Therapeutic hypothermia and hypoxia-ischemia in the term-equivalent neonatal rat: characterization of a translational preclinical model. Pediatr Res 78:264–271. https://doi.org/10.1038/pr.2015.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel SD, Pierce L, Ciardiello AJ, Vannucci SJ (2014) Neonatal encephalopathy: pre-clinical studies in neuroprotection. Biochem Soc Trans 42:564–568. https://doi.org/10.1042/BST20130247

    Article  CAS  PubMed  Google Scholar 

  15. Arteni NS, Salgueiro J, Torres I et al (2003) Neonatal cerebral hypoxia-ischemia causes lateralized memory impairments in the adult rat. Brain Res 973:171–178. https://doi.org/10.1016/S0006-8993(03)02436-3

    Article  CAS  PubMed  Google Scholar 

  16. Pereira LO, Nabinger PM, Strapasson ACP et al (2009) Long-term effects of environmental stimulation following hypoxia-ischemia on the oxidative state and BDNF levels in rat hippocampus and frontal cortex. Brain Res 1247:188–195. https://doi.org/10.1016/j.brainres.2008.10.017

    Article  CAS  PubMed  Google Scholar 

  17. Wang LS, Zhou J, Shao XM, Tang XC (2002) Huperzine A attenuates cognitive deficits and brain injury in neonatal rats after hypoxia-ischemia. Brain Res 949:162–170. https://doi.org/10.1016/S0006-8993(02)02977-3

    Article  CAS  PubMed  Google Scholar 

  18. Semple BD, Blomgren K, Gimlin K et al (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001

    Article  PubMed  Google Scholar 

  19. Alexander M, Garbus H, Smith AL et al (2014) Behavioral and histological outcomes following neonatal HI injury in a preterm (P3) and term (P7) rodent model. Behav Brain Res 259:85–96. https://doi.org/10.1016/j.bbr.2013.10.038

    Article  CAS  PubMed  Google Scholar 

  20. Sanches EF, Arteni N, Nicola F et al (2015) Sexual dimorphism and brain lateralization impact behavioral and histological outcomes following hypoxia–ischemia in P3 and P7 rats. Neuroscience 290:581–593. https://doi.org/10.1016/j.neuroscience.2014.12.074

    Article  CAS  PubMed  Google Scholar 

  21. McCullough N, Parkes J, Kerr C, McDowell BC (2011) The health of children and young people with cerebral palsy: a longitudinal, population-based study. Int J Nurs Stud 50:747–756. https://doi.org/10.1016/j.ijnurstu.2011.01.011

    Article  PubMed  Google Scholar 

  22. Volpe JJ (2009) The encephalopathy of prematurity-brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol 16:167–178. https://doi.org/10.1016/j.spen.2009.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  23. Durán-Carabali L, Sanches E, Marques M et al (2017) Longer hypoxia–ischemia periods to neonatal rats causes motor impairments and muscular changes. Neuroscience 340:291–298. https://doi.org/10.1016/j.neuroscience.2016.10.068

    Article  CAS  PubMed  Google Scholar 

  24. Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 100:149–160

    Article  CAS  PubMed  Google Scholar 

  25. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248. https://doi.org/10.1016/j.neuron.2013.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Odorcyk FK, Nicola F, Duran-Carabali LE et al (2017) Galantamine administration reduces reactive astrogliosis and upregulates the anti-oxidant enzyme catalase in rats submitted to neonatal hypoxia ischemia. Int J Dev Neurosci 62:15–24. https://doi.org/10.1016/j.ijdevneu.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  27. Ling E-A, Leblond CP (1973) Investigation of glial cells in semithin sections. II. Variation with age in the numbers of the various glial cell types in rat cortex and corpus callosum. J Comp Neurol 149:73–81. https://doi.org/10.1002/cne.901490105

    Article  CAS  PubMed  Google Scholar 

  28. Epelman M, Daneman A, Halliday W et al (2012) Abnormal corpus callosum in neonates after hypoxic-ischemic injury. Pediatr Radiol 42:321–330. https://doi.org/10.1007/s00247-011-2238-5

    Article  PubMed  Google Scholar 

  29. Sanches EF, Durán-Carabali LE, Tosta A et al (2017) Pregnancy swimming causes short- and long-term neuroprotection against hypoxia-ischemia in very immature rats. Pediatr Res 82:544–553. https://doi.org/10.1038/pr.2017.110

    Article  CAS  PubMed  Google Scholar 

  30. Moses P, Courchesne E, Stiles J et al (2000) Regional size reduction in the human corpus callosum following pre- and perinatal brain injury. Cereb Cortex 10:1200–1210. https://doi.org/10.1093/cercor/10.12.1200

    Article  CAS  PubMed  Google Scholar 

  31. Lubics A, Reglodi D, Tamás A et al (2005) Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 157:157–165. https://doi.org/10.1016/j.bbr.2004.06.019

    Article  PubMed  Google Scholar 

  32. Cárdenas L, García-García F, Santiago-Roque I et al (2015) Enriched environment restricted to gestation accelerates the development of sensory and motor circuits in the rat pup. Int J Dev Neurosci 41:68–73. https://doi.org/10.1016/j.ijdevneu.2014.11.008

    Article  PubMed  Google Scholar 

  33. Fox WM (1965) Reflex-ontogeny and behavioural development of the mouse. Anim Behav 13:234–241. https://doi.org/10.1016/0003-3472(65)90041-2

    Article  CAS  PubMed  Google Scholar 

  34. Sanches EF, Arteni NS, Spindler C et al (2012) Effects of pre- and postnatal protein malnutrition in hypoxic-ischemic rats. Brain Res 1438:85–92. https://doi.org/10.1016/j.brainres.2011.12.024

    Article  CAS  PubMed  Google Scholar 

  35. Favero AM, Weis SN, Zeni G et al (2006) Diphenyl diselenide changes behavior in female pups. Neurotoxicol Teratol 28:607–616. https://doi.org/10.1016/j.ntt.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  36. Arteni NS, Pereira LO, Rodrigues AL et al (2010) Lateralized and sex-dependent behavioral and morphological effects of unilateral neonatal cerebral hypoxia-ischemia in the rat. Behav Brain Res 210:92–98. https://doi.org/10.1016/j.bbr.2010.02.015

    Article  CAS  PubMed  Google Scholar 

  37. Paxinos G, Watson C (1998) The rat brain—in stereotaxic coordinates, Fourth

  38. Furukawa S, Sameshima H, Yang L, Ikenoue T (2011) Acetylcholine receptor agonist reduces brain damage induced by hypoxia-ischemia in newborn rats. Reprod Sci 18:172–179. https://doi.org/10.1177/1933719110385129

    Article  CAS  PubMed  Google Scholar 

  39. Ota A, Ikeda T, Ikenoue T, Toshimori K (1997) Sequence of neuronal responses assessed by immunohistochemistry in the newborn rat brain after hypoxia-ischemia. Am J Obstet Gynecol 177:519–526. https://doi.org/10.1016/S0002-9378(97)70139-X

    Article  CAS  PubMed  Google Scholar 

  40. Mestriner RG, Saur L, Bagatini PB et al (2015) Astrocyte morphology after ischemic and hemorrhagic experimental stroke has no influence on the different recovery patterns. Behav Brain Res 278:257–261. https://doi.org/10.1016/j.bbr.2014.10.005

    Article  PubMed  Google Scholar 

  41. Tai W, Burke KA, Dominguez JF et al (2009) Growth deficits in a postnatal day 3 rat model of hypoxic-ischemic brain injury. Behav Brain Res 202:40–49. https://doi.org/10.1016/j.bbr.2009.03.043

    Article  PubMed  Google Scholar 

  42. Mayoral SR, Omar G, Penn AA (2009) Sex differences in a hypoxia model of preterm brain damage. Pediatr Res 66:248–253. https://doi.org/10.1203/PDR.0b013e3181b1bc34

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ment LR, Schwartz M, Makuch RW, Stewart WB (1998) Association of chronic sublethal hypoxia with ventriculomegaly in the developing rat brain. Dev Brain Res. https://doi.org/10.1016/S0165-3806(98)00139-4

    Article  Google Scholar 

  44. Horvath G, Reglődi Dora, Farkas J et al (2015) Perinatal positive and negative influences on the early neurobehavioral reflex and motor development. In: Antonelli Marta C (ed) Perinatal programming of neurodevelopment. Springer, New York, pp 149–167

    Chapter  Google Scholar 

  45. Ashwal S, Ghosh N, Turenius CI et al (2014) The reparative effects of neural stem cells in neonatal hypoxic-schemic injury are not influenced by host gender. Pediatr Res 75:603–611. https://doi.org/10.1038/pr.2014.7.The

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang Z, Song L, Wang C et al (2012) Hypoxia-ischemia upregulates TRAIL and TRAIL receptors in the immature rat brain. Dev Neurosci 33:519–530. https://doi.org/10.1159/000334475

    Article  CAS  Google Scholar 

  47. Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141. https://doi.org/10.1002/ana.410090206

    Article  PubMed  Google Scholar 

  48. Schuch CP, Diaz R, Deckmann I et al (2016) Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia. Neurosci Lett 617:101–107. https://doi.org/10.1016/j.neulet.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  49. Söderström I, Strand M, Ingridsson AC et al (2009) 17Β-Estradiol and enriched environment accelerate cognitive recovery after focal brain ischemia. Eur J Neurosci 29:1215–1224. https://doi.org/10.1111/j.1460-9568.2009.06662.x

    Article  PubMed  Google Scholar 

  50. Sanches E, Arteni N, Scherer E et al (2013) Are the consequences of neonatal hypoxia-ischemia dependent on animals’ sex and brain lateralization? Brain Res 1507:105–114. https://doi.org/10.1016/j.brainres.2013.02.040

    Article  CAS  PubMed  Google Scholar 

  51. Nunn JA, LePeillet E, Netto CA et al (1994) Global ischaemia: hippocampal pathology and spatial deficits in the water maze. Behav Brain Res 62:41–54. https://doi.org/10.1016/0166-4328(94)90036-1

    Article  CAS  PubMed  Google Scholar 

  52. Bothe HW, Bosma HJ, Hofer H et al (1986) Selective vulnerability of hippocampus and disturbances of memory storage after mild unilateral ischemia of gerbil brain. Stroke 17:1160–1163. https://doi.org/10.1161/01.STR.17.6.1160

    Article  CAS  PubMed  Google Scholar 

  53. Zanelli AS, Rajasekaran KK, Grosenbaugh KD, Kapur J (2015) Increased excitability and excitatory synaptic transmission during in vitro ischemia in the neonatal mouse hippocampus. Neuroscience 3:279–289. https://doi.org/10.1016/j.neuroscience.2015.09.046

    Article  CAS  Google Scholar 

  54. McLean C, Ferriero D (2004) Mechanisms of hypoxic-ischemic injury in the term infant. Semin Perinatol 28:425–432. https://doi.org/10.1053/j.semperi.2004.10.005

    Article  PubMed  Google Scholar 

  55. Zhu C, Wang X, Xu F et al (2005) The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 12:162–176. https://doi.org/10.1038/sj.cdd.4401545

    Article  CAS  PubMed  Google Scholar 

  56. Ferriero DM (2001) Oxidant mechanisms in neonatal hypoxia-ischemia. Dev Neurosci 23:198–202. https://doi.org/10.1159/000046143

    Article  CAS  PubMed  Google Scholar 

  57. Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553–562. https://doi.org/10.1203/00006450-200111000-00003

    Article  CAS  PubMed  Google Scholar 

  58. Rocha-Ferreira E, Hristova M, Rocha-Ferreira E, Hristova M (2016) Plasticity in the neonatal brain following hypoxic-ischaemic injury. Neural Plast 2016:1–16. https://doi.org/10.1155/2016/4901014

    Article  CAS  Google Scholar 

  59. Johnston MV (2009) Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev 15:94–101. https://doi.org/10.1002/ddrr.64

    Article  PubMed  Google Scholar 

  60. Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330:774–778. https://doi.org/10.1126/science.1190928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gobius I, Morcom L, Suárez R et al (2016) Astroglial-mediated remodeling of the interhemispheric midline is required for the formation of the corpus callosum Ilan. Cell Rep 17:735–747. https://doi.org/10.1016/j.celrep.2016.09.033.Astroglial-mediated

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mallard C, Davidson JO, Tan S et al (2013) Astrocytes and microglia in acute cerebral injury underlying cerebral palsy associated with preterm birth. Pediatr Res 75:1–7. https://doi.org/10.1038/pr.2013.188

    Article  CAS  Google Scholar 

  63. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mestriner RG, Pagnussat S, Boisserand LSB et al (2011) Skilled reaching training promotes astroglial changes and facilitated sensorimotor recovery after collagenase-induced intracerebral hemorrhage. Exp Neurol 227:53–61. https://doi.org/10.1016/j.expneurol.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  65. Po C, Kalthoff D, Kim YB et al (2012) White matter reorganization and functional response after focal cerebral ischemia in the rat. PLoS ONE. https://doi.org/10.1371/journal.pone.0045629

    Article  PubMed  PubMed Central  Google Scholar 

  66. Segovia KN, Mcclure M, Moravec M et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63:520–530. https://doi.org/10.1002/ana.21359.ARRESTED

    Article  PubMed  PubMed Central  Google Scholar 

  67. Theodosis D, Poulain D, Oliet S (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev. https://doi.org/10.1152/physrev.00036.2007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of Reproduction and Laboratory Animal Research Center from Biochemistry Department UFRGS.

Funding

Present work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Durán-Carabali.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán-Carabali, L.E., Sanches, E.F., Odorcyk, F.K. et al. Tissue Injury and Astrocytic Reaction, But Not Cognitive Deficits, Are Dependent on Hypoxia Duration in Very Immature Rats Undergoing Neonatal Hypoxia–Ischemia. Neurochem Res 44, 2631–2642 (2019). https://doi.org/10.1007/s11064-019-02884-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02884-4

Keywords

Navigation