Skip to main content

Advertisement

Log in

β-Asarone Regulates ER Stress and Autophagy Via Inhibition of the PERK/CHOP/Bcl-2/Beclin-1 Pathway in 6-OHDA-Induced Parkinsonian Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

A Correction to this article was published on 18 April 2022

This article has been updated

Abstract

β-Asarone (1,2,4-trimethoxy-5-[(Z)-prop-1-enyl]benzene) is an essential component of Acorus tatarinowii Schott volatile oil. Previous research has observed that β-asarone effectively attenuated symptoms in parkinsonian rats and improved their performance, but the mechanism of this effect remains unclear. Other research has shown that endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of Parkinson’s disease (PD). The protein kinase RNA-like endoplasmic reticulum kinase (PERK) was observed in the nigrostriatal dopaminergic neurons of patients with PD. However, our group observed that ER stress and autophagy occurred in 6-hydroxy dopamine (6-OHDA)-induced parkinsonian rats, and ER stress might induce autophagy. We assume that the protective role of β-asarone in parkinsonian rats is mediated via the ER stress-autophagy pathway. To support this hypothesis, we investigated the expressions of glucose regulated protein 78 (GRP78), PERK phosphorylation (p-PERK), C/EBP homologous binding protein (CHOP), Bcl-2 and Beclin-1 in 6-OHDA-induced parkinsonian rats after β-asarone treatment. The results showed that the β-asarone group and PERK inhibitor group had lower levels of GRP78, p-PERK, CHOP and Beclin-1 while having higher levels of Bcl-2. We deduced that β-asarone might regulate the ER stress-autophagy via inhibition of the PERK/CHOP/Bcl-2/Beclin-1 pathway in 6-OHDA-induced parkinsonian rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Oikonomou E, Paparrigopoulos T (2015) Neuropsychiatric manifestations in Parkinson’s disease. Psychiatriki 26:116–130

    CAS  PubMed  Google Scholar 

  2. Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, Obeso JA (2009) Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 8:1128–1139

    Article  CAS  PubMed  Google Scholar 

  3. Koch JC, Bitow F, Haack J, d’Hedouville Z, Zhang JN, Tönges L, Michel U, Oliveira LM, Jovin TM, Liman J, Tatenhorst L, Bähr M, Lingor P (2015) Alpha-synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons. Cell Death Dis 6:e1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Omura T, Kaneko M, Okuma Y, Matsubara K, Nomura Y (2013) Endoplasmic reticulum stress and Parkinson’s disease: the role of HRD1 in averting apoptosis in neurodegenerative disease. Oxid Med Cell Longev 2013:239854

    Article  PubMed  PubMed Central  Google Scholar 

  5. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  6. Hoozemans JJ, Van Haastert ES, Nijholt DA, Rozemuller AJ, Scheper W (2012) Activation of the unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease. Neurodegener Dis 10:212–215

    Article  CAS  PubMed  Google Scholar 

  7. Yamamuro A, Yoshioka Y, Ogita K, Maeda S (2006) Involvement of endoplasmic reticulum stress on the cell death induced by 6-hydroxydopamine in human neuroblastoma SH-SY5Y cells. Neurochem Res 31:657–664

    Article  CAS  PubMed  Google Scholar 

  8. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22:10690–10698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang YQ, Shi C, Liu L, Fang RM (2012) Pharmacokinetics of beta-asarone in rabbit blood, hippocampus, cortex, brain stem, thalamus and cerebellum. Pharmazie 67:120–123

    CAS  PubMed  Google Scholar 

  10. Zhang S, Gui XH, Huang LP, Deng MZ, Fang RM, Ke XH, He YP, Li L, Fang YQ (2016) Neuroprotective effects of β-asarone against 6-hydroxy dopamine-induced parkinsonism via JNK/Bcl-2/Beclin-1pathway. Mol Neurobiol 53:83–94

    Article  CAS  PubMed  Google Scholar 

  11. Huang LP, Deng MZ, He YP, Fang YQ (2015) β-asarone and levodopa coadministration protects against 6-OHDA-induced damage in parkinsonian rat mesencephalon by regulting autophagy: down-expression Beclin-1 and LC3B and up-expression p62. Clin Exp Pharmacol Physiol 42:269–277

    Article  CAS  PubMed  Google Scholar 

  12. Ning BL, Deng MZ, Zhang QX, Wang NB (2016) β-asarone inhibits IRE1/XBP1 endoplasmic reticulum stress pathway in 6-OHDA-induced parkinsonian rats. Neurochem Res 41:2097–2101

    Article  CAS  PubMed  Google Scholar 

  13. Ventruti A, Cuervo AM (2007) Autophagy and neurodegeneration. Curr Neurol Neurosci Rep 7:443–451

    Article  CAS  PubMed  Google Scholar 

  14. Jheng JR, Ho JY, Horng JT (2014) ER stress, autophagy, and RNA viruses. Front Microbiol 5:388

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J, Belaidi E, Ovize M, Touret M, Nataf S, Mollereau B (2012) ER stress inhibits neuronal death by promoting autophagy. Autophagy 8:915–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei G, Chen YB, Chen DF, Lai XP, Liu DH, Deng RD, Zhou JH, Zhang SX, Li YW, Lii H, Liu LF, Wang Q (2013) Nie H.β-Asarone inhibits neuronal apoptosis via the CaMKII/CREB/Bcl-2 signaling pathway in an in vitro model and AβPP/PS1 mice. J Alzheimers Dis 33:863–880

    Article  CAS  PubMed  Google Scholar 

  17. Li C, Xing G, Dong M, Zhou L, Li J, Wang G, Zou D, Wang R, Liu J, Niu Y (2010) Beta-asarone protection against beta-amyloid-induced neurotoxicity in PC12 cells via JNK signaling and modulation of Bcl-2 family proteins. Eur J Pharmacol 635:96–102

    Article  CAS  PubMed  Google Scholar 

  18. Liu K, Shi Y, Guo X, Wang S, Ouyang Y, Hao M, Liu D, Qiao L, Li N, Zheng J, Chen D (2014) CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2. Cell Death Dis 5:e1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu L, Fang YQ (2011) Analysis of the distribution of beta-asarone in rat hippocampus, brainstem, cortex and cerebellum with gas chromatography-mass spectrometry (GC-MS). J Med Plants Res 5:1728–1734

    CAS  Google Scholar 

  20. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  21. He Y, Mo Z, Xue Z, Fang Y (2013) Establish a flow cytometric method for quantitative detection of Beclin-1 expression. Cytotechnology 65:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu L, Fang YQ, Xue ZF, He YP, Fang RM, Li L (2012) Beta-asarone attenuates ischemia-reperfusion-induced autophagy in rat brains via modulating JNK, p-JNK, Bcl-2 and Beclin1. Eur J Pharmacol 680:34–40

    Article  CAS  PubMed  Google Scholar 

  23. Kalia LV, Kalia SK (2015) α-Synuclein and lewy pathology in Parkinson’s disease. Curr Opin Neurol 28:375–381

    Article  CAS  PubMed  Google Scholar 

  24. Hotamisligil GS (2010) Endoplasmic reticulum stress and atherosclerosis. Nat Med 16:396–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Todd DJ, Lee AH, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8:663–674

    Article  CAS  PubMed  Google Scholar 

  26. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18:7499–7509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, Gallagher CM, Ang KK, Wilson C, Okreglak V, Ashkenazi A, Hann B, Nader K, Arkin MR, Renslo AR, Sonenberg N, Walter P (2013) Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife 2:e00498

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu L, Tian YY, Shi JP, Xie W, Shi JQ, Lu J, Zhang YD (2013) Inhibition of endoplasmic reticulum stress is involved in the neuroprotective effects of candesartan cilexitil in the rotenone rat model of parkinson’s disease. Neurosci Lett 548:50–55

    Article  CAS  PubMed  Google Scholar 

  31. Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA, Mallucci GR (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5:206ra138

    Article  PubMed  Google Scholar 

  32. Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281:30299–30304

    Article  CAS  PubMed  Google Scholar 

  33. Senft D, Ronai ZA (2015) UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 40:141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Morris MW Jr, Dorsett-Martin WA, Drake LC, Anderson CD (2013) Autophagy is involved in endoplasmic reticulum stress-induced cell death of rat hepatocytes. J Surg Res 183:929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jing X, Shi Q, Bi W, Zeng Z, Liang Y, Wu X, Xiao S, Liu J, Yang L, Tao E (2014) Rifampicin protects PC12 cells from rotenone-induced cytotoxicity by activating GRP78 via PERK-eIF2α-ATF4pathway. PLoS ONE 9:e92110

    Article  PubMed  PubMed Central  Google Scholar 

  36. B’chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A (2013) The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 41:7683–7699

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role ofautophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  CAS  PubMed  Google Scholar 

  38. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  39. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Funds for Distinguished Young Scholar (Grant No. 81804166), the China Postdoctoral Science Foundation (Grant No. 2018M643054), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030310531), the Scientific Research Project of Administration of Traditional Chinese Medicine of Guangdong Province, China (Grant No. 20191129), Sanming Project of Medicine in Shenzhen (Grant No. SZSM201806077) and Shenzhen Bao’an Research Center for Acupuncture and Moxibustion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Fang.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, B., Zhang, Q., Wang, N. et al. β-Asarone Regulates ER Stress and Autophagy Via Inhibition of the PERK/CHOP/Bcl-2/Beclin-1 Pathway in 6-OHDA-Induced Parkinsonian Rats. Neurochem Res 44, 1159–1166 (2019). https://doi.org/10.1007/s11064-019-02757-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02757-w

Keywords

Navigation