Skip to main content
Log in

Radix Scutellariae Attenuates CUMS-Induced Depressive-Like Behavior by Promoting Neurogenesis via cAMP/PKA Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic mild unpredictable stress (CUMS) causes neurogenesis damage in the hippocampus and depressive-like behaviors such as cognitive impairment. Radix Scutellariae from the dry root of Scutellaria baicalensis Georgi, with the common name Baikal skullcap. In this study, we demonstrated that Radix Scutellariae (RS 500, 1000 mg/kg) notably improved the behavior of the rat, such as shortened escape latency in morris maze test, reduced immobility time in tail suspension test and in forced swimming test, as well as increased sucrose consumption in sucrose preference test. In addition, RS alleviated the damage CUMS-induced neurogenesis and the reduced levels of BrdU; DCX and NeuN, the neurons hallmark of hippocampus neurogenesis. Moreover, associated proteins in cAMP/PKA pathway were up-regulated after RS treatment. By HPLC analysis, we found that RS decoction contains four main components, including baicalin, baicalein, wogonoside and wogonin, respectively. In conclusion, RS could exert a natural antidepressant with improving depressive-like behavior via regulation of cAMP/PKA neurogenesis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AOD:

Average optical density

BCA:

Bicinchoninic acid

BDNF:

Brain derived neurotrophic factor

BrdU:

5-Bromo-2-deoxyUridine

CUMS:

Chronic unpredictable mild stress

cAMP:

Cyclic Adenosine monophosphate

CREB:

cAMP-response element binding protein

DCX:

Doublecortin

DG:

Dentate gyrus

Flu:

Fluoxetine

FST:

Forced swimming test

MWM:

Morris water maze

NeuN:

Neuron specific nuclear protein

NSCs:

Neural stem cells

OFT:

Open field test

PKA:

Protein kinase A

PVDF:

Polycinylidene difluoride

RS:

Radix Scutellariae

SD:

Spargue-Dawley

SPT:

Sucrose preference test

References

  1. Zhang C, Lueptow LM, Zhang HT et al (2017) The role of phosphodiesterase-2 in psychiatric and neurodegenerative disorders. Adv Neurobiol 17:307–347. https://doi.org/10.1007/978-3-319-58811-7_12

    Article  PubMed  Google Scholar 

  2. Ali SS, Khan SA, Khosa F et al (2017) Noninvasive assessment of subclinical atherosclerosis in persons with symptoms of depression. Atherosclerosis 264:92–98. https://doi.org/10.1016/j.atherosclerosis.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  3. Rose EJ, Ebmeier KP (2006) Pattern of impaired working memory during major depression. J Affect Disord 90(2–3):149–161. https://doi.org/10.1016/j.jad.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  4. Alexander LF, Oliver A, Burdine LK et al (2017) Reported maladaptive decision-making in unipolar and bipolar depression and its change with treatment. Psychiatry Res 257:386–392. https://doi.org/10.1016/j.psychres.2017.08.004

    Article  PubMed  Google Scholar 

  5. Sun LN, Sun QS, Qi JS (2017) Adult hippocampal neurogenesis: an important target associated with antidepressant effects of exercise. Rev Neurosci 28(7):693–703. https://doi.org/10.1515/revneuro-2016-0076

    Article  PubMed  Google Scholar 

  6. Wang JH, Han B, Geng Y et al (2017) Chronic stress contributes to cognitive dysfunction and hippocampal metabolic abnormalities in APP/PS1 mice. Cell Physiol Biochem 41(5):1766–1776. https://doi.org/10.1159/000471869

    Article  CAS  PubMed  Google Scholar 

  7. Drew MR, Huckleberry KA (2017) Modulation of aversive memory by adult hippocampal neurogenesis. Neurotherapeutics 14(3):646–661. https://doi.org/10.1007/s13311-017-0528-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16(3):239–249. https://doi.org/10.1002/hipo.20156

    Article  CAS  PubMed  Google Scholar 

  9. Morales-Garcia JA, Alonso-Gil S, Santos A et al (2017) Phosphodiesterase7 inhibition activates adult neurogenesis in hippocampus and subventricular zone in vitro and in vivo. Stem cells 35(2):458–472. https://doi.org/10.1002/stem.2480

    Article  CAS  PubMed  Google Scholar 

  10. Gargantini E, Lazzari L, Settanni F et al (2016) Obestatin promotes proliferation and survival of adult hippocampal progenitors and reduces amyloid-β-induced toxicity. Mol Cell Endocrinol 422:18–30. https://doi.org/10.1016/j.mce.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  11. Chiu FL, Qu HL, Chuang CY et al (2015) Elucidating the role of the A 2A adenosine receptor in neurodegeneration using neurons derived from Huntington’s disease iPSCs. Hum Mol Genet 24(21):6066–6079. https://doi.org/10.1093/hmg/ddv318

    Article  CAS  PubMed  Google Scholar 

  12. Zhao SS, Zhao M, Qu H et al (2014) Forced limb-use enhances brain plasticity through the cAMP/PKA/CREB signal transduction pathway after stroke in adult rats. Restor Neurol Neurosci 32(5):597–609. https://doi.org/10.3233/RNN-130374

    Article  CAS  PubMed  Google Scholar 

  13. Ko YH, Kwon SH, Jang CG (2017) Liquiritigenin ameliorates memory and cognitive impairment through cholinergic and BDNF pathways in the mouse hippocampus. Arch Pharm Res 40(10):1209–1217. https://doi.org/10.1007/s12272-017-0954-6

    Article  CAS  PubMed  Google Scholar 

  14. Zhu DY, Lau L, Liu SH et al (2004) Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 101(25):9453–9457. https://doi.org/10.1073/pnas.0401063101

    Article  CAS  PubMed  Google Scholar 

  15. Waterhouse EG, Xu B (2009) New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 42(2):81–89. https://doi.org/10.1016/j.mcn.2009.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Acheson A, Conover JC, Fandl JP (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374(6521):450–453. https://doi.org/10.1038/374450a0

    Article  CAS  Google Scholar 

  17. Ren L, Chen G (2017) Rapid antidepressant effects of Yueju: a new look at the function and mechanism of an old herbal medicine. J Ethnopharmacol 203:226–232. https://doi.org/10.1016/j.jep.2017.03.042

    Article  PubMed  Google Scholar 

  18. Willner P (2016) The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol Stress 6:78–93. https://doi.org/10.1016/j.ynstr.2016.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hill MN, Weinberg J, Verma P et al (2012) Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 36(9):2085–2117. https://doi.org/10.1016/j.neubiorev.2012.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ito N, Oikawa T, Hirose E et al (2017) Kososan, a Kampo medicine, prevents asocial avoidance behavior and attenuates neuroinflammation in socially defeated mice. J Neuroinflammation 14(1):98. https://doi.org/10.1186/s12974-017-0876-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guo YJ, Zhang ZJ, Wang SH et al (2009) Notch 1 signaling, hippocampal neurogenesis and behavioral responses to chronic unpredicted mild stress in adult ischemic rats. Prog Neuropsychopharmacol Biol Psychiatry 33(4):688–694. https://doi.org/10.1016/j.pnpbp.2009.03.022

    Article  PubMed  Google Scholar 

  22. Yan L, Mak MS, Lou J et al (2016) A Chinese herbal decoction, reformulated from Kai-Xin-San relieves the depression-like symptoms in stressed rats and induces neurogenesis in cultured neurons. Sci Rep 6:30014. https://doi.org/10.1038/srep30014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amini-Khoeiab H, Mohammadi-Asl A, Amiri S et al (2017) Oxytocin mitigated the depressive-like behaviors of maternal separation stress through modulating mitochondrial function and neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 76:169–178. https://doi.org/10.1016/j.pnpbp.2017.02.022

    Article  CAS  Google Scholar 

  24. Shetty RA, Sadananda M (2017) Brief Social isolation in the adolescent Wistar-Kyoto rat model of endogenous depression alters corticosterone and regional monoamine concentrations. Neurochem Res 42(5):1470–1477. https://doi.org/10.1007/s11064-017-2203-2

    Article  CAS  PubMed  Google Scholar 

  25. Sun XX, Li SS, Xu LX et al (2017) Paeoniflorin ameliorates cognitive dysfunction via regulating SOCS2/IRS-1 pathway in diabetic rats. Physiol Behav 174:162–169. https://doi.org/10.1016/j.physbeh.2017.03.020

    Article  CAS  PubMed  Google Scholar 

  26. Appel JR, Ye s, Tang F et al (2018) Increased microglial activity, impaired adult hippocampal neurogenesis, and depressive-like behavior in microglial VPS35-depleted mice. J Neurosci 38(6):5949–5968. https://doi.org/10.1523/JNEUROSCI.3621-17.2018

    Article  CAS  PubMed  Google Scholar 

  27. Singh S, Mishra A, Bharti S et al (2018) Glycogen synthase kinase-3β regulates equilibrium between neurogenesis and gliogenesis in rat model of Parkinson’s disease: a crosstalk with Wnt and notch signaling. Mol Neurobiol 55(8):6500–6517. https://doi.org/10.1007/s12035-017-0860-4

    Article  CAS  PubMed  Google Scholar 

  28. Ritov G, Boltyansky B, Richter-Levin G (2016) A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction. Mol Psychiatry 21(5):630–641. https://doi.org/10.1038/mp.2015.169

    Article  CAS  PubMed  Google Scholar 

  29. Yu HY, Yin ZJ, Yang SJ et al (2014) Baicalin reverse AMPA receptor expression and neuron apoptosis in chronic unpredictable mild stress rats. Biochem Biophys Res Commun 451(4):467–472. https://doi.org/10.1016/j.bbrc.2014.07.041

    Article  CAS  PubMed  Google Scholar 

  30. Deng XY, Xue JS, Li HY et al (2015) Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model. Physiol Behav 152(Pt-A):264–271. https://doi.org/10.1016/j.physbeh.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  31. Qiao H, Li MX, Xu C et al (2016) Dendritic spines in depression: what we learned from animal models. Neural Plast 2016:26. https://doi.org/10.1155/2016/8056370

    Article  Google Scholar 

  32. Hu CL, Luo Y, Wang H et al (2017) Re-evaluation of the interrelationships among the behavioral tests in rats exposed to chronic unpredictable mild stress. PLoS ONE 12(9):e0185129. https://doi.org/10.1371/journal.pone.0185129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krza AM, Cao JJL, Agius M, Hoschl C (2017) Dose neurogenesis relate to depression and do antidepressants affect neurogenesis? Psychiatr Danub 29(4):241–246

    Google Scholar 

  34. Joshi SH, Pirnia T, Leaver A et al (2016) Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depressin. Biol Psychiatry 79(4):282–292. https://doi.org/10.1016/j.biopsych.2015.02.029

    Article  PubMed  Google Scholar 

  35. Schoenfeld TJ, Morris HD, Padmanaban V et al (2017) Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 82(12):914–923. https://doi.org/10.1016/j.biopsych.2017.05.013

    Article  PubMed  Google Scholar 

  36. MacQueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 16(3):252–264. https://doi.org/10.1038/mp.2010.80

    Article  CAS  PubMed  Google Scholar 

  37. Wehbi VL, Taskén K (2016) Molecular mechanisms for cAMP-mediated immune-regulation in T cells—role of anchored protein kinase A signaling units. Front immunol 7:222. https://doi.org/10.3389/fimmu.2016.00222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang HH, Yang LH (2016) Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol 57(2):R93–R108. https://doi.org/10.1530/JME-15-0316

    Article  CAS  PubMed  Google Scholar 

  39. Yu T, Yang G, Wu C et al (2017) Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene 36(15):2131–2145. https://doi.org/10.1038/onc.2016.370

    Article  CAS  PubMed  Google Scholar 

  40. Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69(6):375–390. https://doi.org/10.1016/S0301-0082(03)00085-6

    Article  CAS  PubMed  Google Scholar 

  41. Landeira BS, Santana TTDS, Araújo JAM et al (2018) Activity-independent effects of CREB on neuronal survival and differentiation during mouse cerebral cortex development. Cereb Cortex 28(2):538–548. https://doi.org/10.1093/cercor/bhw387

    Article  PubMed  Google Scholar 

  42. Hsiao YH, Hung HC, Chen SH et al (2014) Interaction rescues memory deficit in an animal model of Alzheimer’s disease by increasing BDNF-dependent hippocampal neurogenesis. J Neurosci 34(49):16207–16219. https://doi.org/10.1523/JNEUROSCI.0747-14.2014

    Article  CAS  PubMed  Google Scholar 

  43. Zhang K, Pan X, Wang F et al (2016) Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression. Sci Rep 6:30951. https://doi.org/10.1038/srep30951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhuang PW, Cui GZ, Zhang YJ et al (2013) Baicalin regulates neuronal fate decision in neural stem/progenitor cells and stimulates hippocampal neurogenesis in adult rats. CNS Neurosci Ther 19(3):154–162. https://doi.org/10.1111/cns.12050

    Article  CAS  PubMed  Google Scholar 

  45. Gao L, Li C, Lian WW et al (2015) Ameliorative effects of baicalein in MPTP-induced mouse model of Parkinson’s disease: a microarray study. Pharmacol Biochem Behav 133:155–163. https://doi.org/10.1016/j.pbb.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Zhao J, Holscher C (2017) Therapeutic potential of baicalein in Alzheimer’s disease and Parkinson’s disease. CNS Drugs 31(8):639–652. https://doi.org/10.1007/s40263-017-0451-y

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by The Natural Science Foundation of China (8157140641).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Qu or Shiping Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Guo, L., Ji, Z. et al. Radix Scutellariae Attenuates CUMS-Induced Depressive-Like Behavior by Promoting Neurogenesis via cAMP/PKA Pathway. Neurochem Res 43, 2111–2120 (2018). https://doi.org/10.1007/s11064-018-2635-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2635-3

Keywords

Navigation