Skip to main content

Advertisement

Log in

Ultrastructural Changes and Expression of PCNA and RPE65 in Sodium Iodate-Induced Acute Retinal Pigment Epithelium Degeneration Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alteration in retinal pigment epithelium (RPE) results in the visual dysfunction and blindness of retinal degenerative diseases. Injection of sodium iodate (NaIO3) generates degeneration of RPE. We analyzed the sequential ultrastructure and expression of proliferating cell nuclear antigen (PCNA) and retina-specific RPE65 in NaIO3-induced retinal degeneration model. Adult male rats were injected 1% NaIO3 (50 mg/kg) and eyes were enucleated at 1, 3, 5, 7 and 14 days post-injection (DPI), fixed, and processed for histological analysis. NaIO3-induced retinal degeneration was successfully established. At 1 DPI, most RPE cells were degenerated and replaced by a few proliferating RPE cells in the peripheral area. At 3 DPI, the RPE and photoreceptor out segments (POS) underwent a marked morphological change, including POS disruption, accumulation of residual bodies in RPE and POS, and hyperplasia of the RPE cell. At 5 DPI, POS showed a maximum increase in the outer segment debris and the retina showed partial detachment. These abnormal morphological changes gradually decreased by day 7. At 14 DPI, the damaged RPE and POS were partially regenerated from the peripheral to the central region. Expression of PCNA and RPE65 increased from day 3 onward. The damaged RPE showed earlier expression of PCNA and RPE65 than POS. The RPE damaged by NaIO3 rapidly proliferated to put down roots on Bruch’s membrane from the peripheral retina and proliferation and hyperplasia of the RPE had a regular direction of progress. Therefore, NaIO3-induced acute changes in retina mimic the patho-morphologic features of RPE-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Post J, Burt DW, Cornelissen JB, Broks V, van Zoelen D, Peeters B, Rebel JM (2012) Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus. Virol J 9:61

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anstadt B, Blair NP, Rusin M, Cunha-Vaz JG, Tso MO (1982) Alteration of the blood-retinal barrier by sodium iodate: kinetic vitreous fluorophotometry and horseradish peroxidase trace studies. Exp Eye Res 35:653–662

    Article  CAS  PubMed  Google Scholar 

  3. Ringvold A, Olsen EG, Flage T (1981) Transient breakdown of the retinal pigment epithelium diffusion barrier after sodium iodate: a fluorescein angiographic and morphologic study in the rabbit. Exp Eye Res 33:361–369

    Article  CAS  PubMed  Google Scholar 

  4. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  5. Zarbin M (1998) Age-related macular degeneration: review of pathogenesis. Eur J Ophthalmol 8:199–206

    Article  CAS  PubMed  Google Scholar 

  6. Wilson D, Weleber R, Green W (1991) Ocular clinicopathologic study of gyrate atrophy. Am J Ophthalmol 111:24–33

    Article  CAS  PubMed  Google Scholar 

  7. Van Soest S, Westerveld A, De Jong PT, Bleeker-Wagemakers EM, Bergen AA (1999) Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol 43:321–334

    Article  PubMed  Google Scholar 

  8. Kopitz J, Holz F, Kaemmerer E, Schutt F (2004) Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration. Biochimie 86:825–831

    Article  CAS  PubMed  Google Scholar 

  9. Shamsi FA, Boulton M (2001) Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Vis Sci 42:3041–3046

    CAS  PubMed  Google Scholar 

  10. Ashburn F, Pilkerton AR, Rao NA, Marak GE (1980) The effects of iodate and iodoacetate on the retinal adhesion. Investigative Ophthalmol Vis Sci 19:1427–1432

    CAS  Google Scholar 

  11. Franco LM, Zulliger R, Wolf-Schnurrbusch UE, Katagiri Y, Kaplan HJ, Wolf S, Enzmann V (2009) Decreased visual function after patchy loss of retinal pigment epithelium induced by low-dose sodium iodate. Invest Ophthalmol Vis Sci 50:4004–4010

    Article  PubMed  Google Scholar 

  12. Kiuchi K, Yoshizawa K, Shikata N, Moriguchi K, Tsubura A (2002) Morphologic characteristics of retinal degeneration induced by sodium iodate in mice. Curr Eye Res 25:373–379

    Article  PubMed  Google Scholar 

  13. Nilsson SE, Knave B, Persson HE (1977) Changes in ultrastructure and function of the sheep pigment epithelium and retina induced by sodium iodate: II: early effects. Acta Ophthalmol 55:1007–1026

    Article  CAS  Google Scholar 

  14. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka M, Machida S, Ohtaka K, Tazawa Y, Nitta J (2005) Third-order neuronal responses contribute to shaping the negative electroretinogram in sodium iodate-treated rats. Curr Eye Res 30:443–453

    Article  CAS  PubMed  Google Scholar 

  16. Yamashita H, Yamasaki K, Sugihara K, Miyata H, Tsutsumi S, Iwaki Y (2009) Full-field electroretinography obtained using a contact lens electrode with built-in high-intensity white-light-emitting diodes can be utilized in toxicological assessments in rats. Ophthalmic Res 42:15–20

    Article  PubMed  Google Scholar 

  17. Sasaki S, Yamashita H, Yagi K, Iwaki Y, Kimura M (2006) Full-field ERGs obtained using a contact lens electrode with built-in high intensity white light-emitting diodes in beagle dogs can be applied to toxicological assessments. Toxicol Lett 166:115–121

    Article  CAS  PubMed  Google Scholar 

  18. Textorius O, Welinder E (1981) Early effects of sodium iodate on the directly recorded standing potential of the eye and on the c-wave of the DC registered electroretinogram in albino rabbits. Acta Ophthalmol 59:359–368

    Article  CAS  Google Scholar 

  19. Anderson DH, Guerin CJ, Erickson PA, Stern WH, Fisher SK (1986) Morphological recovery in the reattached retina. Invest Ophthalmol Vis Sci 27:168–183

    CAS  PubMed  Google Scholar 

  20. Hosoda L, Adachi-Usami E, Mizota A, Hanawa T, Kimura T (1993) Early effects of sodium iodate injection on ERG in mice. Acta Ophthalmol 71:616–622

    Article  CAS  Google Scholar 

  21. Machalińska A, Lubiński W, Kłos P, Kawa M, Baumert B, Penkala K, Grzegrzółka R, Karczewicz D, Wiszniewska B, Machaliński B (2010) Sodium iodate selectively injuries the posterior pole of the retina in a dose-dependent manner: morphological and electrophysiological study. Neurochem Res 35:1819–1827

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oganesian A, Bueno E, Yan Q, Spee C, Black J, Rao NA, Lopez PF (1997) Scanning and transmission electron microscopic findings during RPE wound healing in vivo. Int Ophthalmol 21:165–175

    Article  CAS  PubMed  Google Scholar 

  23. Enzmann V, Row BW, Yamauchi Y, Kheirandish L, Gozal D, Kaplan HJ, McCall MA (2006) Behavioral and anatomical abnormalities in a sodium iodate-induced model of retinal pigment epithelium degeneration. Exp Eye Res 82:441–448

    Article  CAS  PubMed  Google Scholar 

  24. Bosch E, Horwitz J, Bok D (1993) Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction. J Histochem Cytochem 41:253–263

    Article  CAS  PubMed  Google Scholar 

  25. Kadkhodaeian HA, Tiraihi T, Daftarian N, Ahmadieh H, Ziaei H, Taheri T (2016) Histological and electrophysiological changes in the retinal pigment epithelium after injection of sodium iodate in the orbital venus plexus of pigmented rats. J Ophthalmic Vis Res 11:70–77

    Article  PubMed  PubMed Central  Google Scholar 

  26. Heegaard S, Larsen JNB, Fledelius HC, Prause JU (2001) Neoplasia versus hyperplasia of the retinal pigment epithelium. Acta Ophthalmol Scand 79:626–633

    Article  CAS  PubMed  Google Scholar 

  27. Holz FG, Bellman C, Staudt S, Schütt F, Völcker HE (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1051–1056

    CAS  PubMed  Google Scholar 

  28. Katz ML, Wendt KD, Sanders DN (2005) RPE65 gene mutation prevents development of autofluorescence in retinal pigment epithelial phagosomes. Mech Ageing Dev 126:513–521

    Article  CAS  PubMed  Google Scholar 

  29. Nilsson SEG (2006) From basic to clinical research: a journey with the retina, the retinal pigment epithelium, the cornea, age-related macular degeneration and hereditary degenerations, as seen in the rear view mirror. Acta Ophthalmol Scand 84:452–465

    Article  PubMed  Google Scholar 

  30. Anderson D, Stern W, Fisher S, Erickson P, Borgula G (1983) Retinal detachment in the cat: the pigment epithelial-photoreceptor interface. Invest Ophthalmol Vis Sci 24:906–926

    CAS  PubMed  Google Scholar 

  31. Anderson DH, Stern WH, Fisher SK, Erickson PA, Borgula GA (1981) The onset of pigment epithelial proliferation after retinal detachment. Invest Ophthalmol Vis Sci 21:10–16

    CAS  PubMed  Google Scholar 

  32. Hogan MJ, Wood I, Steinberg RH (1974) Phagocytosis by pigment epithelium of human retinal cones. Nature 252:305

    Article  Google Scholar 

  33. Katz ML, Rice LM, Gao C-L (1999) Reversible accumulation of lipofuscin-like inclusions in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 40:175–181

    CAS  PubMed  Google Scholar 

  34. Kennedy CJ, Rakoczy PE, Constable IJ (1995) Lipofuscin of the retinal pigment epithelium: a review. Eye 9:763–771

    Article  PubMed  Google Scholar 

  35. Bonilha VL (2008) Age-and disease-related structural changes in the retinal pigment epithelium. Clin Ophthalmol 2:413–424

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kaemmerer E, Schutt F, Krohne TU, Holz FG, Kopitz J (2007) Effects of lipid peroxidation-related protein modifications on RPE lysosomal functions and POS phagocytosis. Invest Ophthalmol Vis Sci 48:1342–1347

    Article  PubMed  Google Scholar 

  37. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606

    Article  CAS  PubMed  Google Scholar 

  38. Okubo A, Sameshima M, Unoki K, Uehara F, Bird AC (2000) Ultrastructural changes associated with accumulation of inclusion bodies in rat retinal pigment epithelium. Invest Ophthalmol Vis Sci 41:4305–4312

    CAS  PubMed  Google Scholar 

  39. Holz FG, Pauleikhoff D, Klein R, Bird AC (2004) Pathogenesis of lesions in late age-related macular disease. Am J Ophthalmol 137:504–510

    Article  PubMed  Google Scholar 

  40. Rakoczy PE, Zhang D, Robertson T, Barnett NL, Papadimitriou J, Constable IJ, Lai C-M (2002) Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am J Pathol 161:1515–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katz M, Norberg M (1992) Influence of dietary vitamin A on autofluorescence of leupeptin-induced inclusions in the retinal pigment epithelium. Exp Eye Res 54:239–246

    Article  CAS  PubMed  Google Scholar 

  42. Hamel CP, Tsilou E, Pfeffer B, Hooks J, Detrick B, Redmond T (1993) Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem 268:15751–15757

    CAS  PubMed  Google Scholar 

  43. Qtaishat NM, Redmond TM, Pepperberg DR (2003) Acute radiolabeling of retinoids in eye tissues of normal and rpe65-deficient mice. Invest Ophthalmol Vis Sci 44:1435–1446

    Article  PubMed  Google Scholar 

  44. Stern J, Temple S (2015) Retinal pigment epithelial cell proliferation. Exp Biol Med 240:1079–1086

    Article  CAS  Google Scholar 

  45. Vihtelic TS, Soverly JE, Kassen SC, Hyde DR (2006) Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Exp Eye Res 82:558–575

    Article  CAS  PubMed  Google Scholar 

  46. Oster SF, Mojana F, Brar M, Yuson RM, Cheng L, Freeman WR (2010) Disruption of the photoreceptor inner segment/outer segment layer on spectral domain-optical coherence tomography is a predictor of poor visual acuity in patients with epiretinal membranes. Retina 30:713–718

    Article  PubMed  Google Scholar 

  47. Lamba D, Karl M, Reh T (2008) Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell 2:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Salero E, Blenkinsop TA, Corneo B, Harris A, Rabin D, Stern JH, Temple S (2012) Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell 10:88–95

    Article  CAS  PubMed  Google Scholar 

  49. Green WR, Enger C (2005) Age-related macular degeneration histopathologic studies: the 1992 Lorenz E. Zimmerman Lecture. Retina 25:1519–1535

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the faculty research fund of Konkuk University and the Veterinary Science Research Institute of Konkuk University (2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hwan Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HL., Nam, S.M., Chang, BJ. et al. Ultrastructural Changes and Expression of PCNA and RPE65 in Sodium Iodate-Induced Acute Retinal Pigment Epithelium Degeneration Model. Neurochem Res 43, 1010–1019 (2018). https://doi.org/10.1007/s11064-018-2508-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2508-9

Keywords

Navigation