Skip to main content

Advertisement

Log in

Human Neural Stem Cells with GDNF Site-Specific Integration at AAVS1 by Using AAV Vectors Retained Their Stemness

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The neural stem cells (NSCs) have the ability to self-renew, and to migrate to pathologically altered regions of the central nervous system. Glial cell derived neurotrophic factor (GDNF) could protect dopamine neurons and rescue motor neurons in vivo, which has been proposed as a promising candidate for the treatments of degenerative neurological diseases. In order to combine the advantages of neurotrophic factors and stem cells in clinical therapy, we established the modified hNSCs that has site-specific integration of GDNF gene by using recombinant adeno-associated virus (rAAV) vectors. The hNSCs were co-infected by rAAV2-EGFP-GDNF and rAAV2-SVAV2 which provide integrase to specifically integrate GDNF gene into AAVS1 site. The GDNF-hNSCs maintained their original stem cell characteristics and the ability to differentiate into neurons in vitro. In the animal model, the GDNF-hNSCs were specifically transplanted into CA1 area of hippocampi and could migrate to the dentate gyrus region and differentiate into neuronal cells while maintaining GDNF expression. hNSCs with GDNF gene site-specific integration at AAVS1 by using AAV vectors retained their stemness and effectively expressed GDNF, which indicates the potential of employing transplanted hNPCs for treatment of brain injuries and degenerative neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438. https://doi.org/10.1126/science.287.5457.1433

    Article  CAS  PubMed  Google Scholar 

  2. Svendsen CN, Caldwell NA, Ostenfeld T (1999) Human neural stem cells: Isolation, expansion and transplantation. Brain Pathol 9(3):499–513

    Article  CAS  PubMed  Google Scholar 

  3. Hsu YC, Lee DC, Chiu IM (2007) Neural stem cells, neural progenitors, and neurotrophic factors. Cell Transpl 16(2):133–150

    Google Scholar 

  4. Lindvall O, Kokaia Z (2005) Stem cell therapy for human brain disorders. Kidney Int 68(5):1937–1939. https://doi.org/10.1111/j.1523-1755.2005.00623.x

    Article  PubMed  Google Scholar 

  5. Melone MA, Jori FP, Peluso G (2005) Huntington’s disease: new frontiers for molecular and cell therapy. Curr Drug Targets 6(1):43–56

    Article  CAS  PubMed  Google Scholar 

  6. Schultz SS (2005) Adult stem cell application in spinal cord injury. Curr Drug Targets 6(1):63–73

    Article  CAS  PubMed  Google Scholar 

  7. Imitola J (2007) Prospects for neural stem cell-based therapies for neurological diseases. Neurotherapeutics 4(4):701–714. https://doi.org/10.1016/j.nurt.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  8. Sukhikh GT, Malaitsev VV (2001) Neural stem cell: biology and prospects of neurotransplantation. Bull Exp Biol Med 131(3):203–212

    Article  CAS  PubMed  Google Scholar 

  9. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3(5):383–394. https://doi.org/10.1038/nrn812

    Article  CAS  PubMed  Google Scholar 

  10. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Therapeut 138(2):155–175. https://doi.org/10.1016/j.pharmthera.2013.01.004

    Article  CAS  Google Scholar 

  11. Domanskyi A, Saarma M, Airavaara M (2015) Prospects of neurotrophic factors for Parkinson’s disease: comparison of protein and gene therapy. Hum Gene Ther 26(8):550–559. https://doi.org/10.1089/hum.2015.065

    Article  CAS  PubMed  Google Scholar 

  12. Olanow CW, Bartus RT, Baumann TL, Factor S, Boulis N, Stacy M, Turner DA, Marks W, Larson P, Starr PA, Jankovic J, Simpson R, Watts R, Guthrie B, Poston K, Henderson JM, Stern M, Baltuch G, Goetz CG, Herzog C, Kordower JH, Alterman R, Lozano AM, Lang AE (2015) Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol 78(2):248–257. https://doi.org/10.1002/ana.24436

    Article  Google Scholar 

  13. Walton KM (1999) GDNF: a novel factor with therapeutic potential for neurodegenerative disorders. Mol Neurobiol 19(1):43–59

    Article  CAS  PubMed  Google Scholar 

  14. Linden RM, Winocour E, Berns KI (1996) The recombination signals for adeno-associated virus site-specific integration. Proc Natl Acad Sci U S A 93(15):7966–7972. https://doi.org/10.1073/pnas.93.15.7966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Philpott NJ, Gomos J, Berns KI, Falck-Pedersen E (2002) A p5 integration efficiency element mediates Rep-dependent integration into AAVS1 at chromosome 19. Proc Natl Acad Sci USA 99(19):12381–12385. https://doi.org/10.1073/pnas.182430299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balague C, Kalla M, Zhang WW (1997) Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome. J Virol 71(4):3299–3306

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Recchia A, Perani L, Sartori D, Olgiati C, Mavilio F (2004) Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol Ther 10(4):660–670. https://doi.org/10.1016/j.ymthe.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  18. Ogata T, Kozuka T, Kanda T (2003) Identification of an insulator in AAVS1, a preferred region for integration of adeno-associated virus DNA. J Virol 77(16):9000–9007. https://doi.org/10.1128/Jvi.77.16.9000-9007.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luan Z, Qu S, Du K, Liu W, Yang Y, Wang Z, Cui Y, Du Q (2013) Neural stem/progenitor cell transplantation for cortical visual impairment in neonatal brain injured patients. Cell Transpl 22(Suppl 1):S101–S112. https://doi.org/10.3727/096368913X672163

    Article  Google Scholar 

  20. Zhang C, Cortez NG, Berns KI (2007) Characterization of a bipartite recombinant adeno-associated viral vector for site-specific integration. Hum Gene Ther 18(9):787–797. https://doi.org/10.1089/hum.2007.056

    Article  CAS  PubMed  Google Scholar 

  21. Aurnhammer C, Haase M, Muether N, Hausl M, Rauschhuber C, Huber I, Nitschko H, Busch U, Sing A, Ehrhardt A, Baiker A (2012) Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum Gene Ther Methods 23(1):18–28. https://doi.org/10.1089/hgtb.2011.034

    Article  CAS  PubMed  Google Scholar 

  22. Gao J, Prough DS, McAdoo DJ, Grady JJ, Parsley MO, Ma L, Tarensenko YI, Wu P (2006) Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol 201(2):281–292. https://doi.org/10.1016/j.expneurol.2006.04.039

    Article  CAS  PubMed  Google Scholar 

  23. Bartlett JS, Samulski RJ, McCown TJ (1998) Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 9(8):1181–1186. https://doi.org/10.1089/hum.1998.9.8-1181

    Article  CAS  PubMed  Google Scholar 

  24. Kearns CM, Gash DM (1995) Gdnf protects nigral dopamine neurons against 6-hydroxydopamine in-vivo. Brain Res 672(1–2):104–111. https://doi.org/10.1016/0006-8993(94)01366-P

    Article  CAS  PubMed  Google Scholar 

  25. Gash DM, Zhang ZM, Ai Y, Grondin R, Coffey R, Gerhardt GA (2005) Trophic factor distribution predicts functional recovery in Parkinsonian monkeys. Ann Neurol 58(2):224–233. https://doi.org/10.1002/ana.20549

    Article  CAS  PubMed  Google Scholar 

  26. Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59(3):459–466. https://doi.org/10.1002/ana.20737

    Article  CAS  PubMed  Google Scholar 

  27. Lim ST, Airavaara M, Harvey BK (2010) Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res 61(1):14–26. https://doi.org/10.1016/j.phrs.2009.10.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (81371670), the Key Technology Support Program of Jiangsu Province (Grant No. BE2014638), and the Science and Technology Program of Suzhou (Grant No. ZXY201432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Zhang.

Ethics declarations

Conflict of interest

The authors state no financial/commercial conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, X., Zhang, Y. et al. Human Neural Stem Cells with GDNF Site-Specific Integration at AAVS1 by Using AAV Vectors Retained Their Stemness. Neurochem Res 43, 930–937 (2018). https://doi.org/10.1007/s11064-018-2498-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2498-7

Keywords

Navigation