Skip to main content

Advertisement

Log in

Chronic Cerebral Hypoperfusion Promotes Amyloid-Beta Pathogenesis via Activating β/γ-Secretases

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic cerebral hypoperfusion (CCH) contributes to the Alzheimer’s-like pathogenesis, but the relationship between CCH and the occurrence of Alzheimer’s disease (AD) remains obscure. The aim is to elucidate the potential pathophysiological mechanism in the field of amyloid-beta (Aβ) pathology induced by CCH. A rat model of CCH has been developed with permanent bilateral occlusion of common carotid arteries (BCCAO). The cognitive function of rats was tested by the Morris water maze. The levels of Aβ (Aβ40 and Aβ42) and soluble amyloid precursor protein (sAPP: sAPPα and sAPPβ) were determined by enzyme linked immunosorbent assay. The expression of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), presenilin1 (PS1), nicastrin (NCT), anterior pharynx-defective 1alpha (Aph-1α) and presenilin enhancer 2 (Pen-2), sAPPα and sAPPβ were detected by Western blotting. Morris water maze test showed that CCH induced decline in learning and memory related to Aβ levels in the hippocampus. The levels of sAPPα, ADAM10 and ADAM17 in the hippocampus of CCH rats were higher than the control ones (P < 0.05); the levels of sAPPβ, BACE and BACE1 increased more than the control ones (P < 0.05). CCH intervention (1-week or 4-week) markedly increased the expression of PS1, Aph-1α and Pen-2 in the hippocampus of rats, but had no effect on NCT. CCH contributed to cognitive impairment and altered the amyloidogenic and non-amyloidogenic pathway of APP processing by boosting the activity of β-secretase/γ-secretase and α-secretase respectively. The non-amyloidogenic pathway can’t overcome the damage role of the amyloidogenic pathway in the process of chronic cerebral hypoperfusion which promotes amyloid-beta pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mutsuga M, Chambers JK, Uchida K, Tei M, Makibuchi T, Mizorogi T, Takashima A, Nakayama H (2012) Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer’s brain. J Vet Med Sci 74(1):51–57

    Article  CAS  PubMed  Google Scholar 

  2. Shin J, Lee SY, Kim SH, Kim YB, Cho SJ (2008) Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer’s disease. Neuroimage 43(2):236–244

    Article  PubMed  Google Scholar 

  3. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N et al (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100(17):10032–10037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deibel SH, Weishaupt N, Regis AM, Hong NS, Keeley RJ, Balog RJ, Bye CM, Himmler SM, Whitehead SN, McDonald RJ (2016) Subtle learning and memory impairment in an idiopathic rat model of Alzheimer’s disease utilizing cholinergic depletions and beta-amyloid. Brain Res 1646:12–24

    Article  CAS  PubMed  Google Scholar 

  5. Soodi M, Saeidnia S, Sharifzadeh M, Hajimehdipoor H, Dashti A, Sepand MR, Moradi S (2016) Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer’s disease. Metab Brain Dis 31(2):395–404

    Article  CAS  PubMed  Google Scholar 

  6. Suganthy N, Malar DS, Devi KP (2016) Rhizophora mucronata attenuates beta-amyloid induced cognitive dysfunction, oxidative stress and cholinergic deficit in Alzheimer’s disease animal model. Metab Brain Dis 31(4):937–949

    Article  CAS  PubMed  Google Scholar 

  7. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tamaoka A (2013) [The pathophysiology of Alzheimer’s disease with special reference to “amyloid cascade hypothesis”]. Rinsho Byori 61(11):1060–1069

    CAS  PubMed  Google Scholar 

  9. Barage SH, Sonawane KD (2015) Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52:1–18

    Article  CAS  PubMed  Google Scholar 

  10. Solans A, Estivill X, de La Luna S (2000) A new aspartyl protease on 21q22.3, BACE2, is highly similar to Alzheimer’s amyloid precursor protein beta-secretase. Cytogenet Cell Genet 89(3–4):177–184

    Article  CAS  PubMed  Google Scholar 

  11. Sadleir KR, Kandalepas PC, Buggia-Prevot V, Nicholson DA, Thinakaran G, Vassar R (2016) Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Abeta generation in Alzheimer’s disease. Acta Neuropathol 132(2):235–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhiyou C, Yong Y, Shanquan S, Jun Z, Liangguo H, Ling Y, Jieying L (2009) Upregulation of BACE1 and beta-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer’s disease. Neurochem Res 34(7):1226–1235

    Article  PubMed  Google Scholar 

  13. Maloney B, Lahiri DK (2011) The Alzheimer’s amyloid beta-peptide (Abeta) binds a specific DNA Abeta-interacting domain (AbetaID) in the APP, BACE1, and APOE promoters in a sequence-specific manner: characterizing a new regulatory motif. Gene 488(1–2):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu TH, Yan Y, Kang Y, Jiang Y, Melcher K, Xu HE (2016) Alzheimer’s disease-associated mutations increase amyloid precursor protein resistance to gamma-secretase cleavage and the Abeta42/Abeta40 ratio. Cell Discov 2:16026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang N, Gordon ML, Goldberg TE (2017) Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease. Neurosci Biobehav Rev 72:168–175

    Article  CAS  PubMed  Google Scholar 

  16. Hanaoka T, Kimura N, Aso Y, Takemaru M, Kimura Y, Ishibashi M, Matsubara E (2016) Relationship between white matter lesions and regional cerebral blood flow changes during longitudinal follow up in Alzheimer’s disease. Geriatr Gerontol Int 16(7):836–842

    Article  PubMed  Google Scholar 

  17. Lacalle-Aurioles M, Mateos-Perez JM, Guzman-De-Villoria JA, Olazaran J, Cruz-Orduna I, Aleman-Gomez Y, Martino ME, Desco M (2014) Cerebral blood flow is an earlier indicator of perfusion abnormalities than cerebral blood volume in Alzheimer’s disease. J Cereb Blood Flow Metab 34(4):654–659

    Article  PubMed  PubMed Central  Google Scholar 

  18. Toda N, Okamura T (2016) Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: implications for Alzheimer’s disease. J Pharmacol Sci 131(4):223–232

    Article  CAS  PubMed  Google Scholar 

  19. Leeuwis AE, Benedictus MR, Kuijer JP, Binnewijzend MA, Hooghiemstra AM, Verfaillie SC, Koene T, Scheltens P, Barkhof F, Prins ND et al (2017) Lower cerebral blood flow is associated with impairment in multiple cognitive domains in Alzheimer’s disease. Alzheimers Dement 131(5):531–540

    Article  Google Scholar 

  20. Hays CC, Zlatar ZZ, Wierenga CE (2016) The utility of cerebral blood flow as a biomarker of preclinical Alzheimer’s disease. Cell Mol Neurobiol 36(2):167–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li M, Zhang P, Wei HJ, Li MH, Zou W, Li X, Gu HF, Tang XQ (2017) Hydrogen sulfide ameliorates homocysteine-induced cognitive dysfunction by inhibition of reactive aldehydes involving upregulation of ALDH2. Int J Neuropsychopharmacol 20(4):305–315

    Google Scholar 

  22. Zhao Y, Gu JH, Dai CL, Liu Q, Iqbal K, Liu F, Gong CX (2014) Chronic cerebral hypoperfusion causes decrease of O-GlcNAcylation, hyperphosphorylation of tau and behavioral deficits in mice. Front Aging Neurosci 6:10

    PubMed  PubMed Central  Google Scholar 

  23. He J, Qiao JP, Zhu S, Xue M, Chen W, Wang X, Tempier A, Huang Q, Kong J, Li XM (2013) Serum beta-amyloid peptide levels spike in the early stage of Alzheimer-like plaque pathology in an APP/PS1 double transgenic mouse model. Curr Alzheimer Res 10(9):979–986

    Article  CAS  PubMed  Google Scholar 

  24. Neumann S, Schobel S, Jager S, Trautwein A, Haass C, Pietrzik CU, Lichtenthaler SF (2006) Amyloid precursor-like protein 1 influences endocytosis and proteolytic processing of the amyloid precursor protein. J Biol Chem 281(11):7583–7594

    Article  CAS  PubMed  Google Scholar 

  25. Singh I, Sagare AP, Coma M, Perlmutter D, Gelein R, Bell RD, Deane RJ, Zhong E, Parisi M, Ciszewski J et al (2013) Low levels of copper disrupt brain amyloid-beta homeostasis by altering its production and clearance. Proc Natl Acad Sci USA 110(36):14771–14776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang CC, Lin YH, Liu HL, Lee TH (2015) Bladder dysfunction induced by cerebral hypoperfusion after bilateral common carotid artery occlusion in rats. Neurourol Urodyn 34(6):586–591

    Article  CAS  PubMed  Google Scholar 

  27. Schiavon AP, Soares LM, Bonato JM, Milani H, Guimaraes FS, Weffort de Oliveira RM (2014) Protective effects of cannabidiol against hippocampal cell death and cognitive impairment induced by bilateral common carotid artery occlusion in mice. Neurotox Res 26(4):307–316

    Article  CAS  PubMed  Google Scholar 

  28. Huang Y, Fan S, Li J, Wang YL (2014) Bilateral common carotid artery occlusion in the rat as a model of retinal ischaemia. Neuroophthalmology 38(4):180–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Speetzen LJ, Endres M, Kunz A (2013) Bilateral common carotid artery occlusion as an adequate preconditioning stimulus to induce early ischemic tolerance to focal cerebral ischemia. J Vis Exp 75:4387

    Google Scholar 

  30. Surapaneni S, Prakash T, Ansari M, Manjunath P, Kotresha D, Goli D (2016) Study on cerebroprotective actions of Clerodendron glandulosumleaves extract against long term bilateral common carotid artery occlusion in rats. Biomed Pharmacother 80:87–94

    Article  PubMed  Google Scholar 

  31. Kim DH, Choi BR, Jeon WK, Han JS (2016) Impairment of intradimensional shift in an attentional set-shifting task in rats with chronic bilateral common carotid artery occlusion. Behav Brain Res 296:169–176

    Article  PubMed  Google Scholar 

  32. Wang X, Lin F, Gao Y, Lei H (2015) Bilateral common carotid artery occlusion induced brain lesions in rats: a longitudinal diffusion tensor imaging study. Magn Reson Imaging 33(5):551–558

    Article  PubMed  Google Scholar 

  33. Fukuoka T, Hayashi T, Hirayama M, Maruyama H, Tanahashi N (2014) Cilostazol inhibits platelet-endothelial cell interaction in murine microvessels after transient bilateral common carotid artery occlusion. J Stroke Cerebrovasc Dis 23(5):1056–1061

    Article  PubMed  Google Scholar 

  34. Han H, Qian Q, Yu Y, Zhao D, Sun G (2015) Lamotrigine attenuates cerebral ischemia-induced cognitive impairment and decreases beta-amyloid and phosphorylated tau in the hippocampus in rats. Neuroreport 26(12):723–727

    Article  CAS  PubMed  Google Scholar 

  35. Song B, Ao Q, Niu Y, Shen Q, Zuo H, Zhang X, Gong Y (2013) Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury. Neural Regen Res 8(26):2449–2457

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee JS, Im DS, An YS, Hong JM, Gwag BJ, Joo IS (2011) Chronic cerebral hypoperfusion in a mouse model of Alzheimer’s disease: an additional contributing factor of cognitive impairment. Neurosci Lett 489(2):84–88

    Article  CAS  PubMed  Google Scholar 

  37. Reijmer YD, van Veluw SJ, Greenberg SM (2016) Ischemic brain injury in cerebral amyloid angiopathy. J Cereb Blood Flow Metab 36(1):40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kojro E, Fahrenholz F (2005) The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell Biochem 38:105–127

    Article  CAS  PubMed  Google Scholar 

  39. Filippov MA, Dityatev A (2012) Matrix metalloproteinase-9 and non-amyloidogenic pathway of amyloid precursor protein processing. J Neurochem 121(2):181–183

    Article  CAS  PubMed  Google Scholar 

  40. Naslund J, Jensen M, Tjernberg LO, Thyberg J, Terenius L, Nordstedt C (1994) The metabolic pathway generating p3, an A beta-peptide fragment, is probably non-amyloidogenic. Biochem Biophys Res Commun 204(2):780–787

    Article  CAS  PubMed  Google Scholar 

  41. Bandyopadhyay S, Goldstein LE, Lahiri DK, Rogers JT (2007) Role of the APP non-amyloidogenic signaling pathway and targeting alpha-secretase as an alternative drug target for treatment of Alzheimer’s disease. Curr Med Chem 14(27):2848–2864

    Article  CAS  PubMed  Google Scholar 

  42. Bandyopadhyay S, Hartley DM, Cahill CM, Lahiri DK, Chattopadhyay N, Rogers JT (2006) Interleukin-1alpha stimulates non-amyloidogenic pathway by alpha-secretase (ADAM-10 and ADAM-17) cleavage of APP in human astrocytic cells involving p38 MAP kinase. J Neurosci Res 84(1):106–118

    Article  CAS  PubMed  Google Scholar 

  43. Grimm MO, Regner L, Mett J, Stahlmann CP, Schorr P, Nelke C, Streidenberger O, Stoetzel H, Winkler J, Zaidan SR et al (2016) Tocotrienol affects oxidative stress, cholesterol homeostasis and the amyloidogenic pathway in neuroblastoma cells: consequences for Alzheimer’s disease. Int J Mol Sci 17(11):1809

    Article  PubMed Central  Google Scholar 

  44. Fisher CL, Resnick RJ, De S, Acevedo LA, Lu KP, Schroeder FC, Nicholson LK (2017) Cyclic cis-locked phospho-dipeptides reduce entry of AbetaPP into amyloidogenic processing pathway. J Alzheimers Dis 55(1):391–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sachse CC, Kim YH, Agsten M, Huth T, Alzheimer C, Kovacs DM, Kim DY (2013) BACE1 and presenilin/gamma-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels. FASEB J 27(6):2458–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hogl S, Kuhn PH, Colombo A, Lichtenthaler SF (2011) Determination of the proteolytic cleavage sites of the amyloid precursor-like protein 2 by the proteases ADAM10, BACE1 and gamma-secretase. PLoS ONE 6(6):e21337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 100(11):6382–6387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang YW, Luo WJ, Wang H, Lin P, Vetrivel KS, Liao F, Li F, Wong PC, Farquhar MG, Thinakaran G et al (2005) Nicastrin is critical for stability and trafficking but not association of other presenilin/gamma-secretase components. J Biol Chem 280(17):17020–17026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang KL, Lin KJ, Ho MY, Chang YJ, Chang CH, Wey SP, Hsieh CJ, Yen TC, Hsiao IT, Lee TH (2012) Amyloid deposition after cerebral hypoperfusion: evidenced on [(18)F]AV-45 positron emission tomography. J Neurol Sci 319(1–2):124–129

    Article  CAS  PubMed  Google Scholar 

  50. Daulatzai MA (2017) Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res 95(4):943–972

    Article  Google Scholar 

  51. Liang W, Zhang W, Zhao S, Li Q, Liang H, Ceng R (2015) Altered expression of neurofilament 200 and amyloid-beta peptide (1–40) in a rat model of chronic cerebral hypoperfusion. Neurol Sci 36(5):707–712

    Article  PubMed  Google Scholar 

  52. Pimentel-Coelho PM, Michaud JP, Rivest S (2013) Effects of mild chronic cerebral hypoperfusion and early amyloid pathology on spatial learning and the cellular innate immune response in mice. Neurobiol Aging 34(3):679–693

    Article  CAS  PubMed  Google Scholar 

  53. Zhai Y, Yamashita T, Nakano Y, Sun Z, Shang J, Feng T, Morihara R, Fukui Y, Ohta Y, Hishikawa N (2016) et al Chronic cerebral hypoperfusion accelerates Alzheimer’s disease pathology with cerebrovascular remodeling in a novel mouse model. J Alzheimers Dis 53(3):893–905

    Article  CAS  PubMed  Google Scholar 

  54. Shang J, Yamashita T, Zhai Y, Nakano Y, Morihara R, Fukui Y, Hishikawa N, Ohta Y, Abe K (2016) Strong impact of chronic cerebral hypoperfusion on neurovascular unit, cerebrovascular remodeling, and neurovascular trophic coupling in Alzheimer’s disease model mouse. J Alzheimers Dis 52(1):113–126

    Article  CAS  PubMed  Google Scholar 

  55. Okamoto Y, Yamamoto T, Kalaria RN, Senzaki H, Maki T, Hase Y, Kitamura A, Washida K, Yamada M, Ito H (2012) et al Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol 123(3):381–394

    Article  CAS  PubMed  Google Scholar 

  56. Zhai Y, Yamashita T, Nakano Y, Sun Z, Morihara R, Fukui Y, Ohta Y, Hishikawa N, Abe K (2016) Disruption of white matter integrity by chronic cerebral hypoperfusion in Alzheimer’s disease mouse model. J Alzheimers Dis 52(4):1311–1319

    Article  CAS  PubMed  Google Scholar 

  57. ElAli A, Theriault P, Prefontaine P, Rivest S (2013) Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathol Commun 1:75

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bennett SA, Pappas BA, Stevens WD, Davidson CM, Fortin T, Chen J (2000) Cleavage of amyloid precursor protein elicited by chronic cerebral hypoperfusion. Neurobiol Aging 21(2):207–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from by the Natural Science Foundation of Hubei Province (2015CFB260), and the Hubei Province Health and Family Planning Scientific Research Project (WJ2015MB219) and the Shiyan Natural Science Foundation (15K70) and Chongqing General Hospital to Dr Zhiyou Cai.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyou Cai or Fuming Tian.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Liu, Z., Xiao, M. et al. Chronic Cerebral Hypoperfusion Promotes Amyloid-Beta Pathogenesis via Activating β/γ-Secretases. Neurochem Res 42, 3446–3455 (2017). https://doi.org/10.1007/s11064-017-2391-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2391-9

Keywords

Navigation