Skip to main content

Advertisement

Log in

The Oligomer Hypothesis in α-Synucleinopathy

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lewy bodies and Lewy neurites in the brain constitute the main histopathological features of Parkinson’s disease (PD) and dementia with Lewy bodies. They comprise amyloid-like fibrils composed of α-synuclein (αS), a small protein (~14 kDa). Because the aggregation of αS in the brain has been implicated as a critical step in the development of these diseases, the research for disease-modifying drugs has focused on modification of the αS aggregation process in the brain. Recent studies using synthetic αS peptides, a cell culture model, transgenic mice models, and human samples such as cerebrospinal fluids and the blood of PD patients have suggested that pre-fibrillar forms of αS (i.e., oligomers) are more critical than fibrillar forms (such as Lewy bodies) in the pathogenesis of α-synucleinopathies. Based on the accumulating evidence that oligomers play a central role in the pathogenesis of PD and other α-synucleinopathies (the “oligomer hypothesis”). This report reviews the recent findings regarding the oligomer hypothesis in the research of α-synucleinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Article  PubMed  Google Scholar 

  2. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    Article  CAS  PubMed  Google Scholar 

  3. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, Aarsland D, Galvin J, Attems J, Ballard CG, Bayston A, Beach TG, Blanc F, Bohnen N, Bonanni L, Bras J, Brundin P, Burn D, Chen-Plotkin A, Duda JE, El-Agnaf O, Feldman H, Ferman TJ, Ffytche D, Fujishiro H, Galasko D, Goldman JG, Gomperts SN, Graff-Radford NR, Honig LS, Iranzo A, Kantarci K, Kaufer D, Kukull W, Lee VMY, Leverenz JB, Lewis S, Lippa C, Lunde A, Masellis M, Masliah E, McLean P, Mollenhauer B, Montine TJ, Moreno E, Mori E, Murray M, O’Brien JT, Orimo S, Postuma RB, Ramaswamy S, Ross OA, Salmon DP, Singleton A, Taylor A, Thomas A, Tiraboschi P, Toledo JB, Trojanowski JQ, Tsuang D, Walker Z, Yamada M, Kosaka K (2017) Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. doi:10.1212/WNL.0000000000004058

    Google Scholar 

  4. Goedert M (2001) Parkinson’s disease and other α-synucleinopathies. Clin Chem Lab Med 39:308–312

    Article  CAS  PubMed  Google Scholar 

  5. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  CAS  PubMed  Google Scholar 

  7. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  8. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  CAS  PubMed  Google Scholar 

  9. Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M, Maraganore D, Gwinn-Hardy K, Wszolek Z, Dickson D, Langston JW (2004) Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann Neurol 55:174–179

    Article  CAS  PubMed  Google Scholar 

  10. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) α-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  CAS  PubMed  Google Scholar 

  11. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  PubMed  Google Scholar 

  12. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521–533

    Article  CAS  PubMed  Google Scholar 

  13. Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL (2002) Human α-synuclein-harboring familial Parkinson’s disease-linked Ala-53 --> Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99:8968–8973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gai WP, Power JH, Blumbergs PC, Blessing WW (1998) Multiple-system atrophy: a new α-synuclein disease? Lancet 352:547–548

    Article  CAS  PubMed  Google Scholar 

  15. Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ, Kaufmann H, Klockgether T, Lang AE, Lantos PL, Litvan I, Mathias CJ, Oliver E, Robertson D, Schatz I, Wenning GK (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163:94–98

    Article  CAS  PubMed  Google Scholar 

  16. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208

    Article  CAS  PubMed  Google Scholar 

  17. Yazawa I, Giasson BI, Sasaki R, Zhang B, Joyce S, Uryu K, Trojanowski JQ, Lee VM (2005) Mouse model of multiple system atrophy α-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 45:847–859

    Article  CAS  PubMed  Google Scholar 

  18. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Volles MJ, Lansbury PT, Jr. (2003) Zeroing in on the pathogenic form of α-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. BioChemistry 42:7871–7878

  20. Martin ZS, Neugebauer V, Dineley KT, Kayed R, Zhang W, Reese LC, Taglialatela G (2012) α-Synuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: relevance to human synucleopathic diseases. J Neurochem 120:440–452

    Article  CAS  PubMed  Google Scholar 

  21. Taschenberger G, Garrido M, Tereshchenko Y, Bahr M, Zweckstetter M, Kugler S (2012) Aggregation of αSynuclein promotes progressive in vivo neurotoxicity in adult rat dopaminergic neurons. Acta Neuropathol 123:671–683

    Article  CAS  PubMed  Google Scholar 

  22. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci USA 108:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Forloni G, Artuso V, La Vitola P, Balducci C (2016) Oligomeropathies and pathogenesis of Alzheimer and Parkinson’s diseases. Mov Disord 31:771–781

    Article  CAS  PubMed  Google Scholar 

  24. Uversky VN (2007) Neuropathology, biochemistry, and biophysics of α-synuclein aggregation. J Neurochem 103:17–37

    CAS  PubMed  Google Scholar 

  25. Dickson DW, Ruan D, Crystal H, Mark MH, Davies P, Kress Y, Yen SH (1991) Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology 41:1402–1409

    Article  CAS  PubMed  Google Scholar 

  26. Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J, Jellinger K (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol 88:493–500

    Article  CAS  PubMed  Google Scholar 

  27. Braak H, Sandmann-Keil D, Gai W, Braak E (1999) Extensive axonal Lewy neurites in Parkinson’s disease: a novel pathological feature revealed by α-synuclein immunocytochemistry. Neurosci Lett 265:67–69

    Article  CAS  PubMed  Google Scholar 

  28. Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100

    Article  CAS  PubMed  Google Scholar 

  29. Arima K, Ueda K, Sunohara N, Arakawa K, Hirai S, Nakamura M, Tonozuka-Uehara H, Kawai M (1998) NACP/α-synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol 96:439–444

    Article  CAS  PubMed  Google Scholar 

  30. Nishie M, Mori F, Yoshimoto M, Takahashi H, Wakabayashi K (2004) A quantitative investigation of neuronal cytoplasmic and intranuclear inclusions in the pontine and inferior olivary nuclei in multiple system atrophy. Neuropathol Appl Neurobiol 30:546–554

    Article  CAS  PubMed  Google Scholar 

  31. Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disord 18(Suppl 6):S2-12

    PubMed  Google Scholar 

  32. Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21:249–254

    Article  CAS  PubMed  Google Scholar 

  33. Beyer K (2006) Α-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol 112:237–251

    Article  CAS  PubMed  Google Scholar 

  34. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372

    Article  CAS  PubMed  Google Scholar 

  35. Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han H, Weinreb PH, Lansbury PT, Jr. (1995) The core Alzheimer’s peptide NAC forms amyloid fibrils which seed and are seeded by β-amyloid: is NAC a common trigger or target in neurodegenerative disease?. Chem Biol 2:163–169

  37. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    Article  CAS  PubMed  Google Scholar 

  38. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. BioChemistry 35:13709–13715

    Article  CAS  PubMed  Google Scholar 

  39. Uversky VN, Lee HJ, Li J, Fink AL, Lee SJ (2001) Stabilization of partially folded conformation during α-synuclein oligomerization in both purified and cytosolic preparations. J Biol Chem 276:43495–43498

    Article  CAS  PubMed  Google Scholar 

  40. Hashimoto M, Hsu LJ, Sisk A, Xia Y, Takeda A, Sundsmo M, Masliah E (1998) Human recombinant NACP/α-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 799:301–306

    Article  CAS  PubMed  Google Scholar 

  41. Giasson BI, Uryu K, Trojanowski JQ, Lee VM (1999) Mutant and wild type human α-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 274:7619–7622

    Article  CAS  PubMed  Google Scholar 

  42. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proc Natl Acad Sci USA 97:4897–4902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crowther RA, Daniel SE, Goedert M (2000) Characterisation of isolated α-synuclein filaments from substantia nigra of Parkinson’s disease brain. Neurosci Lett 292:128–130

    Article  CAS  PubMed  Google Scholar 

  44. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320

    Article  CAS  PubMed  Google Scholar 

  45. Lucking CB, Brice A (2000) Α-synuclein and Parkinson’s disease. Cell Mol Life Sci 57:1894–1908

    Article  CAS  PubMed  Google Scholar 

  46. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  47. Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M (1999) Both familial Parkinson’s disease mutations accelerate α-synuclein aggregation. J Biol Chem 274:9843–9846

    Article  CAS  PubMed  Google Scholar 

  48. Conway KA, Harper JD, Lansbury PT Jr (2000) Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. BioChemistry 39:2552–2563

    Article  CAS  PubMed  Google Scholar 

  49. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iwai A, Yoshimoto M, Masliah E, Saitoh T (1995) Non-Aβ component of Alzheimer’s disease amyloid (NAC) is amyloidogenic. BioChemistry 34:10139–10145

    Article  CAS  PubMed  Google Scholar 

  51. El-Agnaf OM, Jakes R, Curran MD, Middleton D, Ingenito R, Bianchi E, Pessi A, Neill D, Wallace A (1998) Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments. FEBS Lett 440:71–75

    Article  CAS  PubMed  Google Scholar 

  52. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    Article  CAS  PubMed  Google Scholar 

  53. Lomakin A, Teplow DB, Kirschner DA, Benedek GB (1997) Kinetic theory of fibrillogenesis of amyloid β-protein. Proc Natl Acad Sci USA 94:7942–7947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naiki H, Gejyo F, Nakakuki K (1997) Concentration-dependent inhibitory effects of apolipoprotein E on Alzheimer’s β-amyloid fibril formation in vitro. BioChemistry 36:6243–6250

    Article  CAS  PubMed  Google Scholar 

  55. Naiki H, Gejyo F (1999) Kinetic analysis of amyloid fibril formation. Methods Enzymol 309:305–318

    Article  CAS  PubMed  Google Scholar 

  56. Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL (1999) α-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 274:19509–19512

    Article  CAS  PubMed  Google Scholar 

  57. Buell AK, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles TP, Linse S, Dobson CM (2014) Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc Natl Acad Sci USA 111:7671–7676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fredenburg RA, Rospigliosi C, Meray RK, Kessler JC, Lashuel HA, Eliezer D, Lansbury PT Jr (2007) The impact of the E46K mutation on the properties of α-synuclein in its monomeric and oligomeric states. BioChemistry 46:7107–7118

    Article  CAS  PubMed  Google Scholar 

  59. Ono K, Ikeda T, Takasaki J, Yamada M (2011) Familial Parkinson disease mutations influence α-synuclein assembly. Neurobiol Dis 43:715–724

    Article  CAS  PubMed  Google Scholar 

  60. Goldberg MS, Lansbury PT Jr (2000) Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2:E115-119

    Article  CAS  Google Scholar 

  61. Greenbaum EA, Graves CL, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, Axelsen PH, Giasson BI (2005) The E46K mutation in α-synuclein increases amyloid fibril formation. J Biol Chem 280:7800–7807

    Article  CAS  PubMed  Google Scholar 

  62. Yonetani M, Nonaka T, Masuda M, Inukai Y, Oikawa T, Hisanaga S, Hasegawa M (2009) Conversion of wild-type α-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J Biol Chem 284:7940–7950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ono K, Takahashi R, Ikeda T, Yamada M (2012) Cross-seeding effects of amyloid β-protein and α-synuclein. J Neurochem 122:883–890

    Article  CAS  PubMed  Google Scholar 

  64. Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ, Lee VM (2013) Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154:103–117

    Article  CAS  PubMed  Google Scholar 

  65. Bartels T, Choi JG, Selkoe DJ (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT, Liao J, Auclair JR, Johnson D, Landeru A, Simorellis AK, Ju S, Cookson MR, Asturias FJ, Agar JN, Webb BN, Kang C, Ringe D, Petsko GA, Pochapsky TC, Hoang QQ (2011) A soluble α-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci USA 108:17797–17802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion N, Eliezer D, Moore DJ, Schneider B, Aebischer P, El-Agnaf OM, Masliah E, Lashuel HA (2012) α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem 287:15345–15364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA (2012) Characterization of semisynthetic and naturally Nα-acetylated α-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of α-synuclein. J Biol Chem 287:28243–28262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shaikh S, Nicholson LF (2008) Advanced glycation end products induce in vitro cross-linking of α-synuclein and accelerate the process of intracellular inclusion body formation. J Neurosci Res 86:2071–2082

    Article  CAS  PubMed  Google Scholar 

  70. Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E (1999) Oxidative stress induces amyloid-like aggregate formation of NACP/α-synuclein in vitro. Neuroreport 10:717–721

    Article  CAS  PubMed  Google Scholar 

  71. Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E (1999) Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J Biol Chem 274:28849–28852

    Article  CAS  PubMed  Google Scholar 

  72. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of α-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232

    Article  CAS  PubMed  Google Scholar 

  73. Tsigelny IF, Sharikov Y, Wrasidlo W, Gonzalez T, Desplats PA, Crews L, Spencer B, Masliah E (2012) Role of α-synuclein penetration into the membrane in the mechanisms of oligomer pore formation. FEBS J 279:1000–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rockenstein E, Nuber S, Overk CR, Ubhi K, Mante M, Patrick C, Adame A, Trejo-Morales M, Gerez J, Picotti P, Jensen PH, Campioni S, Riek R, Winkler J, Gage FH, Winner B, Masliah E (2014) Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo. Brain 137:1496–1513

    Article  PubMed  PubMed Central  Google Scholar 

  75. Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S (2010) A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J Neurosci 30:8083–8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Azeredo da Silveira S, Schneider BL, Cifuentes-Diaz C, Sage D, Abbas-Terki T, Iwatsubo T, Unser M, Aebischer P (2009) Phosphorylation does not prompt, nor prevent, the formation of α-synuclein toxic species in a rat model of Parkinson’s disease. Hum Mol Genet 18:872–887

    CAS  PubMed  Google Scholar 

  77. Gorbatyuk OS, Li S, Sullivan LF, Chen W, Kondrikova G, Manfredsson FP, Mandel RJ, Muzyczka N (2008) The phosphorylation state of Ser-129 in human α-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad Sci USA 105:763–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oueslati A, Paleologou KE, Schneider BL, Aebischer P, Lashuel HA (2012) Mimicking phosphorylation at serine 87 inhibits the aggregation of human α-synuclein and protects against its toxicity in a rat model of Parkinson’s disease. J Neurosci 32:1536–1544

    Article  CAS  PubMed  Google Scholar 

  79. Karlsson J, Emgard M, Gido G, Wieloch T, Brundin P (2000) Increased survival of embryonic nigral neurons when grafted to hypothermic rats. Neuroreport 11:1665–1668

    Article  CAS  PubMed  Google Scholar 

  80. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  CAS  PubMed  Google Scholar 

  81. Kordower JH, Freeman TB, Olanow CW (1998) Neuropathology of fetal nigral grafts in patients with Parkinson’s disease. Mov Disord 13(Suppl 1):88–95

    PubMed  Google Scholar 

  82. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  CAS  PubMed  Google Scholar 

  83. Kordower JH, Dodiya HB, Kordower AM, Terpstra B, Paumier K, Madhavan L, Sortwell C, Steece-Collier K, Collier TJ (2011) Transfer of host-derived α synuclein to grafted dopaminergic neurons in rat. Neurobiol Dis 43:552–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K, Li JY, Brundin P (2011) α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jang A, Lee HJ, Suk JE, Jung JW, Kim KP, Lee SJ (2010) Non-classical exocytosis of α-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem 113:1263–1274

    CAS  PubMed  Google Scholar 

  86. Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, Cooper JM (2011) Lysosomal dysfunction increases exosome-mediated α-synuclein release and transmission. Neurobiol Dis 42:360–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee HJ, Suk JE, Bae EJ, Lee JH, Paik SR, Lee SJ (2008) Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int J Biochem Cell Biol 40:1835–1849

    Article  CAS  PubMed  Google Scholar 

  88. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc Natl Acad Sci USA 106:13010–13015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tang B, Becanovic K, Desplats PA, Spencer B, Hill AM, Connolly C, Masliah E, Leavitt BR, Thomas EA (2012) Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease. Hum Mol Genet 21:3097–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T, Glabe C, Hyman BT, McLean PJ (2011) Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J 25:326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM (2009) Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 106:20051–20056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 209:975–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. El-Agnaf OM, Salem SA, Paleologou KE, Cooper LJ, Fullwood NJ, Gibson MJ, Curran MD, Court JA, Mann DM, Ikeda S, Cookson MR, Hardy J, Allsop D (2003) Α-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17:1945–1947

    CAS  PubMed  Google Scholar 

  95. Tokuda T, Salem SA, Allsop D, Mizuno T, Nakagawa M, Qureshi MM, Locascio JJ, Schlossmacher MG, El-Agnaf OM (2006) Decreased α-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease. Biochem Biophys Res Commun 349:162–166

    Article  CAS  PubMed  Google Scholar 

  96. El-Agnaf OM, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, Schlossmacher MG, Allsop D (2006) Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20:419–425

    Article  CAS  PubMed  Google Scholar 

  97. Tokuda T, Qureshi MM, Ardah MT, Varghese S, Shehab SA, Kasai T, Ishigami N, Tamaoka A, Nakagawa M, El-Agnaf OM (2010) Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75:1766–1772

    Article  CAS  PubMed  Google Scholar 

  98. Ono K, Noguchi-Shinohara M, Yoshita M, Naiki H, Yamada M (2007) Cerebrospinal fluid of Alzheimer’s disease and dementia with Lewy bodies patients enhances α-synuclein fibril formation in vitro. Exp Neurol 203:579–583

    Article  CAS  PubMed  Google Scholar 

  99. Hirohata M, Ono K, Morinaga A, Ikeda T, Yamada M (2011) Cerebrospinal fluid from patients with multiple system atrophy promotes in vitro α-synuclein fibril formation. Neurosci Lett 491:48–52

    Article  CAS  PubMed  Google Scholar 

  100. Ono K, Yamada M (2006) Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for α-synuclein fibrils in vitro. J Neurochem 97:105–115

    Article  CAS  PubMed  Google Scholar 

  101. Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL (2004) The flavonoid baicalein inhibits fibrillation of α-synuclein and disaggregates existing fibrils. J Biol Chem 279:26846–26857

    Article  CAS  PubMed  Google Scholar 

  102. Li J, Zhu M, Rajamani S, Uversky VN, Fink AL (2004) Rifampicin inhibits α-synuclein fibrillation and disaggregates fibrils. Chem Biol 11:1513–1521

    Article  CAS  PubMed  Google Scholar 

  103. Ono K, Hirohata M, Yamada M (2007) Anti-fibrillogenic and fibril-destabilizing activity of nicotine in vitro: implications for the prevention and therapeutics of Lewy body diseases. Exp Neurol 205:414–424

    Article  CAS  PubMed  Google Scholar 

  104. Ono K, Yamada M (2007) Vitamin A potently destabilizes preformed α-synuclein fibrils in vitro: implications for Lewy body diseases. Neurobiol Dis 25:446–454

    Article  CAS  PubMed  Google Scholar 

  105. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    Article  CAS  PubMed  Google Scholar 

  106. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA 107:7710–7715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ono K, Hirohata M, Yamada M (2007) Anti-fibrillogenic and fibril-destabilizing activities of anti-Parkinsonian agents for α-synuclein fibrils in vitro. J Neurosci Res 85:1547–1557

    Article  CAS  PubMed  Google Scholar 

  108. Ono K, Mochizuki H, Ikeda T, Nihira T, Takasaki J, Teplow DB, Yamada M (2012) Effect of melatonin on α-synuclein self-assembly and cytotoxicity. Neurobiol Aging 33:2172–2185

    Article  CAS  PubMed  Google Scholar 

  109. Ono K, Takasaki J, Takahashi R, Ikeda T, Yamada M (2013) Effects of antiparkinsonian agents on β-amyloid and α-synuclein oligomer formation in vitro. J Neurosci Res 91:1371–1381

    Article  CAS  PubMed  Google Scholar 

  110. Takahashi R, Ono K, Takamura Y, Mizuguchi M, Ikeda T, Nishijo H, Yamada M (2015) Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity. J Neurochem 134:943–955

    Article  CAS  PubMed  Google Scholar 

  111. Molloy DW, Standish TI, Zhou Q, Guyatt G, Group DS (2013) A multicenter, blinded, randomized, factorial controlled trial of doxycycline and rifampin for treatment of Alzheimer’s disease: the DARAD trial. Int J Geriatr Psychiatry 28:463–470

    Article  PubMed  Google Scholar 

  112. Low PA, Robertson D, Gilman S, Kaufmann H, Singer W, Biaggioni I, Freeman R, Perlman S, Hauser RA, Cheshire W, Lessig S, Vernino S, Mandrekar J, Dupont WD, Chelimsky T, Galpern WR (2014) Efficacy and safety of rifampicin for multiple system atrophy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:268–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. M. Yamada, R. Takahashi, T. Ikeda, A. Morinaga, M. Noguchi-Shinohara, and T. Hamaguchi (Kanazawa University) for assistance in preparing the manuscript.

Funding

This study was supported by Grants-in-Aid for Young Scientists (B), Scientific Research (C) (26461266) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, a grant from Takeda Science Foundation, a grant from Nagao Memorial Foundation, and a grant from Life Science Foundation of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenjiro Ono.

Ethics declarations

Conflict of interest

The author declare that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ono, K. The Oligomer Hypothesis in α-Synucleinopathy. Neurochem Res 42, 3362–3371 (2017). https://doi.org/10.1007/s11064-017-2382-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2382-x

Keywords

Navigation