Skip to main content
Log in

Ginsenoside Re Protects Trimethyltin-Induced Neurotoxicity via Activation of IL-6-Mediated Phosphoinositol 3-Kinase/Akt Signaling in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ginseng (Panax ginseng), an herbal medicine, has been used to prevent neurodegenerative disorders. Ginsenosides (e.g., Re, Rb1, or Rg1) were obtained from Korean mountain cultivated ginseng. The anticonvulsant activity of ginsenoside Re (20 mg/kg/day × 3) against trimethyltin (TMT) insult was the most pronounced out of ginsenosides (e.g., Re, Rb1, and Rg1). Re itself did not significantly alter tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-ϒ), and interleukin-1β (IL-1β) expression, however, it significantly increases the interleukin-6 (IL-6) expression. In addition, Re attenuated the TMT-induced decreases in IL-6 protein level. Therefore, IL-6 knockout (−/−) mice were employed to investigate whether Re requires IL-6-dependent neuroprotective activity against TMT toxicity. Re significantly attenuated TMT-induced lipid peroxidation, protein peroxidation, and reactive oxygen species in the hippocampus. Re-mediated antioxidant effects were more pronounced in IL-6 (−/−) mice than in WT mice. Consistently, TMT-induced increase in c-Fos-immunoreactivity (c-Fos-IR), TUNEL-positive cells, and nuclear chromatin clumping in the dentate gyrus of the hippocampus were significantly attenuated by Re. Furthermore, Re attenuated TMT-induced proapoptotic changes. Protective potentials by Re were comparable to those by recombinant IL-6 protein (rIL-6) against TMT-insult in IL-6 (−/−) mice. Moreover, treatment with a phosphoinositol 3-kinase (PI3K) inhibitor, LY294002 (1.6 µg, i.c.v) counteracted the protective potential mediated by Re or rIL-6 against TMT insult. The results suggest that ginsenoside Re requires IL-6-dependent PI3K/Akt signaling for its protective potential against TMT-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gomez FD, Apodaca P, Holloway LN, Pannell KH, Whalen MM (2007) Effect of a series of triorganotins on the immune function of human natural killer cells. Environ Toxicol Pharmacol 23:18–24

    Article  CAS  PubMed  Google Scholar 

  2. Shawky S, Emons H (1998) Distribution pattern of organotin compounds at different trophic levels of aquatic ecosystems. Chemosphere 36:523–535

    Article  CAS  PubMed  Google Scholar 

  3. Tang X, Wu X, Dubois AM, Sui G, Wu B, Lai G, Gong Z, Gao H, Liu S, Zhong Z, Lin Z, Olson J, Ren X (2013) Toxicity of trimethyltin and dimethyltin in rats and mice. Bull Environ Contam Toxicol 90:626–633

    Article  CAS  PubMed  Google Scholar 

  4. Geloso MC, Corvino V, Michetti F (2011) Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 58:729–738

    Article  CAS  PubMed  Google Scholar 

  5. Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, Hong JS, Yoneda Y, Kim HC (2011) Role of oxidative stress in epileptic seizures. Neurochem Int 59:122–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ishida N, Akaike M, Tsutsumi S, Kanai H, Masui A, Sadamatsu M, Kuroda Y, Watanabe Y, McEwen BS, Kato N (1997) Trimethyltin syndrome as a hippocampal degeneration model: temporal changes and neurochemical features of seizure susceptibility and learning impairment. Neuroscience 81:1183–1191

    Article  CAS  PubMed  Google Scholar 

  7. Fortemps E, Amand G, Bomboir A, Lauwerys R, Laterre EC (1978) Trimethyltin poisoning. Report of two cases. Int Arch Occup Environ Health 41:1–6

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda K, Iwasaki Y, Shiojima T, Kinoshita M (1996) Neuroprotective effect of various cytokines on developing spinal motoneurons following axotomy. J Neurol Sci 135:109–113

    Article  CAS  PubMed  Google Scholar 

  9. Kushima Y, Hatanaka H (1992) Interleukin-6 and leukemia inhibitory factor promote the survival of acetylcholinesterase-positive neurons in culture from embryonic rat spinal cord. Neurosci Lett 143:110–114

    Article  CAS  PubMed  Google Scholar 

  10. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803

    Article  CAS  PubMed  Google Scholar 

  11. Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, De Simoni MG (1999) Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci 19:5054–5065

    CAS  PubMed  Google Scholar 

  12. Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, Knake S, Oertel WH, Hamer HM (2011) Cytokines and epilepsy. Seizure 20:249–256

    Article  PubMed  Google Scholar 

  13. Tran HY, Shin EJ, Saito K, Nguyen XK, Chung YH, Jeong JH, Bach JH, Park DH, Yamada K, Nabeshima T, Yoneda Y, Kim HC (2012) Protective potential of IL-6 against trimethyltin-induced neurotoxicity in vivo. Free Radic Biol Med 52:1159–1174

    Article  CAS  PubMed  Google Scholar 

  14. Penkowa M, Molinero A, Carrasco J, Hidalgo J (2001) Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 102:805–818

    Article  CAS  PubMed  Google Scholar 

  15. Penkowa M, Moos T, Carrasco J, Hadberg H, Molinero A, Bluethmann H, Hidalgo J (1999) Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice. Glia 25:343–357

    Article  CAS  PubMed  Google Scholar 

  16. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204

    Article  PubMed  Google Scholar 

  17. Chung TD, Yu JJ, Kong TA, Spiotto MT, Lin JM (2000) Interleukin-6 activates phosphatidylinositol-3 kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate 42:1–7

    Article  CAS  PubMed  Google Scholar 

  18. Kim DH (2012) Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 36:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu D LY, Xu H, Sun SQ, Wang ZT (2008) Differentiation of the root of Cultivated Ginseng, Mountain Cultivated Ginseng and Mountain Wild Ginseng using FT-IR and two-dimensional correlation IR spectroscopy. J Mol Struct 883–884:228–235

    Article  Google Scholar 

  20. Choi YE, Kim YS, Yi MJ, Park WG, Yi JS, Chun SR, Han SS, Lee SJ (2007) Physiological and chemical characteristics of field- and mountain-cultivated ginseng roots. J Plant Biol 50:198–205

    Article  CAS  Google Scholar 

  21. Ma L, Liu H, Xie Z, Yang S, Xu W, Hou J, Yu B (2014) Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-kappaB pathway: a mouse cardiomyocyte model. PLoS ONE 9:e103628

    Article  PubMed  PubMed Central  Google Scholar 

  22. Paul S, Shin HS, Kang SC (2012) Inhibition of inflammations and macrophage activation by ginsenoside-Re isolated from Korean ginseng (Panax ginseng C.A. Meyer). Food Chem Toxicol 50:1354–1361

    Article  CAS  PubMed  Google Scholar 

  23. Attele AS, Wu JA, Yuan CS (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58:1685–1693

    Article  CAS  PubMed  Google Scholar 

  24. Zhang JK, Gao R, Dou DQ, Kang TG (2013) The ginsenosides and carbohydrate profiles of ginseng cultivated under mountainous forest. Pharmacogn Mag 9:S38–43

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lopez MV, Cuadrado MP, Ruiz-Poveda OM, Del Fresno AM, Accame ME (2007) Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta 1770:1308–1316

    Article  PubMed  Google Scholar 

  26. Lee YS, Chung IS, Lee IR, Kim KH, Hong WS, Yun YS (1997) Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res 17:323–331

    CAS  PubMed  Google Scholar 

  27. Zhang X, Shi M, Bjoras M, Wang W, Zhang G, Han J, Liu Z, Zhang Y, Wang B, Chen J, Zhu Y, Xiong L, Zhao G (2013) Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 4:152

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen LM, Zhou XM, Cao YL, Hu WX (2008) Neuroprotection of ginsenoside Re in cerebral ischemia-reperfusion injury in rats. J Asian Nat Prod Res 10:439–445

    Article  CAS  PubMed  Google Scholar 

  29. Shin EJ, Shin SW, Nguyen TT, Park DH, Wie MB, Jang CG, Nah SY, Yang BW, Ko SK, Nabeshima T, Kim HC (2014) Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cdelta gene. Mol Neurobiol 49:1400–1421

    Article  CAS  PubMed  Google Scholar 

  30. Shin EJ, Nam Y, Tu TH, Lim YK, Wie MB, Kim DJ, Jeong JH, Kim HC (2016) Protein kinase Cdelta mediates trimethyltin-induced neurotoxicity in mice in vivo via inhibition of glutathione defense mechanism. Arch Toxicol 90:937–953

    Article  CAS  PubMed  Google Scholar 

  31. Tran TH, Mai HN, Shin EJ, Nam Y, Nguyen BT, Lee YJ, Jeong JH, Tran HY, Cho EH, Nah SY, Lei XG, Nabeshima T, Kim NH, Kim HC (2016) Repeated exposure to far infrared ray attenuates acute restraint stress in mice via inhibition of JAK2/STAT3 signaling pathway by induction of glutathione peroxidase-1. Neurochem Int 94:9–22

    Article  CAS  PubMed  Google Scholar 

  32. Oliver CN, Levine RL, Stadtman ER (1987) A role of mixed-function oxidation reactions in the accumulation of altered enzyme forms during aging. J Am Geriatr Soc 35:947–956

    Article  CAS  PubMed  Google Scholar 

  33. Shin EJ, Duong CX, Nguyen XK, Li Z, Bing G, Bach JH, Park DH, Nakayama K, Ali SF, Kanthasamy AG, Cadet JL, Nabeshima T, Kim HC (2012) Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cdelta. Behav Brain Res 232:98–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim J, Yang M, Son Y, Jang H, Kim D, Kim JC, Kim SH, Kang MJ, Im HI, Shin T, Moon C (2014) Glial activation with concurrent up-regulation of inflammatory mediators in trimethyltin-induced neurotoxicity in mice. Acta Histochem 116:1490–1500

    Article  CAS  PubMed  Google Scholar 

  35. Kim BK, Tran HY, Shin EJ, Lee C, Chung YH, Jeong JH, Bach JH, Kim WK, Park DH, Saito K, Nabeshima T, Kim HC (2013) IL-6 attenuates trimethyltin-induced cognitive dysfunction via activation of JAK2/STAT3, M1 mAChR and ERK signaling network. Cell Signal 25:1348–1360

    Article  CAS  PubMed  Google Scholar 

  36. Shin EJ, Suh SK, Lim YK, Jhoo WK, Hjelle OP, Ottersen OP, Shin CY, Ko KH, Kim WK, Kim DS, Chun W, Ali S, Kim HC (2005) Ascorbate attenuates trimethyltin-induced oxidative burden and neuronal degeneration in the rat hippocampus by maintaining glutathione homeostasis. Neuroscience 133:715–727

    Article  CAS  PubMed  Google Scholar 

  37. Yamada M, Hatanaka H (1994) Interleukin-6 protects cultured rat hippocampal neurons against glutamate-induced cell death. Brain Res 643:173–180

    Article  CAS  PubMed  Google Scholar 

  38. Dyer RS, Walsh TJ, Wonderlin WF, Bercegeay M (1982) The trimethyltin syndrome in rats. Neurobehav Toxicol Teratol 4:127–133

    CAS  PubMed  Google Scholar 

  39. Shin EJ, Ko KH, Kim WK, Chae JS, Yen TP, Kim HJ, Wie MB, Kim HC (2008) Role of glutathione peroxidase in the ontogeny of hippocampal oxidative stress and kainate seizure sensitivity in the genetically epilepsy-prone rats. Neurochem Int 52:1134–1147

    Article  CAS  PubMed  Google Scholar 

  40. Shin EJ, Koh YH, Kim AY, Nah SY, Jeong JH, Chae JS, Kim SC, Yen TP, Yoon HJ, Kim WK, Ko KH, Kim HC (2009) Ginsenosides attenuate kainic acid-induced synaptosomal oxidative stress via stimulation of adenosine A(2A) receptors in rat hippocampus. Behav Brain Res 197:239–245

    Article  CAS  PubMed  Google Scholar 

  41. Dragunow M, Robertson HA (1987) Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 329:441–442

    Article  CAS  PubMed  Google Scholar 

  42. Shin EJ, Jeong JH, Kim AY, Koh YH, Nah SY, Kim WK, Ko KH, Kim HJ, Wie MB, Kwon YS, Yoneda Y, Kim HC (2009) Protection against kainate neurotoxicity by ginsenosides: attenuation of convulsive behavior, mitochondrial dysfunction, and oxidative stress. J Neurosci Res 87:710–722

    Article  CAS  PubMed  Google Scholar 

  43. Tilg H, Trehu E, Atkins MB, Dinarello CA, Mier JW (1994) Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood 83:113–118

    CAS  PubMed  Google Scholar 

  44. Aderka D, Le JM, Vilcek J (1989) IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J Immunol 143:3517–3523

    CAS  PubMed  Google Scholar 

  45. Zhong J, Dietzel ID, Wahle P, Kopf M, Heumann R (1999) Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. J Neurosci 19:4305–4313

    CAS  PubMed  Google Scholar 

  46. Funk JA, Gohlke J, Kraft AD, McPherson CA, Collins JB, Jean Harry G (2011) Voluntary exercise protects hippocampal neurons from trimethyltin injury: possible role of interleukin-6 to modulate tumor necrosis factor receptor-mediated neurotoxicity. Brain Behav Immun 25:1063–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Penkowa M, Giralt M, Lago N, Camats J, Carrasco J, Hernandez J, Molinero A, Campbell IL, Hidalgo J (2003) Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury. Exp Neurol 181:130–148

    Article  CAS  PubMed  Google Scholar 

  48. Casalbore P, Barone I, Felsani A, D’Agnano I, Michetti F, Maira G, Cenciarelli C (2010) Neural stem cells modified to express BDNF antagonize trimethyltin-induced neurotoxicity through PI3K/Akt and MAP kinase pathways. J Cell Physiol 224:710–721

    Article  CAS  PubMed  Google Scholar 

  49. Xu X, Cao Z, Cao B, Li J, Guo L, Que L, Ha T, Chen Q, Li C, Li Y (2009) Carbamylated erythropoietin protects the myocardium from acute ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Surgery 146:506–514

    Article  PubMed  Google Scholar 

  50. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  CAS  PubMed  Google Scholar 

  51. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  52. Noshita N, Lewen A, Sugawara T, Chan PH (2002) Akt phosphorylation and neuronal survival after traumatic brain injury in mice. Neurobiol Dis 9:294–304

    Article  CAS  PubMed  Google Scholar 

  53. Noshita N, Lewen A, Sugawara T, Chan PH (2001) Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21:1442–1450

    Article  CAS  PubMed  Google Scholar 

  54. Kalimuthu S, Se-Kwon K (2013) Cell survival and apoptosis signaling as therapeutic target for cancer: marine bioactive compounds. Int J Mol Sci 14:2334–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang CM, Liu MY, Wang F, Wei MJ, Wang S, Wu CF, Yang JY (2013) Anti-amnesic effect of pseudoginsenoside-F11 in two mouse models of Alzheimer’s disease. Pharmacol Biochem Behav 106:57–67

    Article  CAS  PubMed  Google Scholar 

  56. Tran TV, Shin EJ, Ko SK, Nam Y, Chung YH, Jeong JH, Jang CG, Nah SY, Yamada K, Nabeshima T, Byun JK, Kim HC (2016) Mountain-cultivated ginseng attenuates phencyclidine-induced abnormal behaviors in mice by positive modulation of glutathione in the prefrontal cortex of mice. J Med Food 19:961–969

    Article  CAS  Google Scholar 

  57. Kim YC, Kim SR, Markelonis GJ, Oh TH (1998) Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res 53:426–432

    Article  CAS  PubMed  Google Scholar 

  58. He B, Chen P, Yang J, Yun Y, Zhang X, Yang R, Shen Z (2012) Neuroprotective effect of 20(R)-ginsenoside Rg(3) against transient focal cerebral ischemia in rats. Neurosci Lett 526:106–111

    Article  CAS  PubMed  Google Scholar 

  59. Hu S, Han R, Mak S, Han Y (2011) Protection against 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells. J Ethnopharmacol 135:34–42

    Article  CAS  PubMed  Google Scholar 

  60. Liu XY, Zhou XY, Hou JC, Zhu H, Wang Z, Liu JX, Zheng YQ (2015) Ginsenoside Rd promotes neurogenesis in rat brain after transient focal cerebral ischemia via activation of PI3K/Akt pathway. Acta Pharmacol Sin 36:421–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (Project No. S111415L020100) of the ‘‘Forestry Technology Projects’’ provided by the Korea Forest Service, and by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the ministry of Science, ICT & Future Planning (#NRF-2013R1A1A2060894 and #NRF-2016R1A1A1A050055201), Republic of Korea. Thu-Hien Thi Tu, Naveen Sharma, and Hai-Quyen Tran were supported by the BK21 PLUS program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Kwon Ko or Hyoung-Chun Kim.

Ethics declarations

Conflict of interest

Authors reported no potential conflicts of interest relevant to this article.

Additional information

Thu-Hien Thi Tu and Naveen Sharma have contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1928 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, TH.T., Sharma, N., Shin, EJ. et al. Ginsenoside Re Protects Trimethyltin-Induced Neurotoxicity via Activation of IL-6-Mediated Phosphoinositol 3-Kinase/Akt Signaling in Mice. Neurochem Res 42, 3125–3139 (2017). https://doi.org/10.1007/s11064-017-2349-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2349-y

Keywords

Navigation