Skip to main content

Advertisement

Log in

Tetramethylpyrazine Analogue CXC195 Protects Against Dopaminergic Neuronal Apoptosis via Activation of PI3K/Akt/GSK3β Signaling Pathway in 6-OHDA-Induced Parkinson’s Disease Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder and characterized by motor system disorders resulting in loss of dopaminergic (DA) neurons. CXC195, a novel tetramethylpyrazine derivative, has been shown strongest neuroprotective effects due to its anti-apoptotic activity. However, whether CXC195 protects against DA neuronal damage in PD and the mechanisms underlying its beneficial effects are unknown. The purpose of our study was to investigate the potential neuroprotective role of CXC195 and to elucidate its mechanism of action against 6-hydroxydopamine (6-OHDA)-induced mouse model of PD. CXC195 administration improved DA neurodegeneration in PD mice induced by 6-OHDA. Our further findings confirmed treatment of CXC195 at the dose of 10 mg/kg significantly inhibited the apoptosis by decreasing the level of cleaved caspase-3 and Bax, and increasing the level of Bcl-2 in 6-OHDA-lesioned mice. Meanwhile, 6-OHDA also decreased the amount of phosphorylated Akt while increased GSK-3β activity (the amount of phosphorylated GSK-3β at Ser9 was decreased) which was prevented by CXC195. Wortmannin, a specific PI3K inhibitor, dramatically abolished the changes induced by CXC195. Our study firstly demonstrated that CXC195 protected against DA neurodegeneration in 6-OHDA-induced PD model by its anti-apoptotic properties and PI3K/Akt/GSK3β signaling pathway was involved in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Basu S, Je G, Kim YS (2015) Transcriptional mutagenesis by 8-oxodG in alpha-synuclein aggregation and the pathogenesis of Parkinson’s disease. Exp Mol Med 47:e179. doi:10.1038/emm.2015.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nutt JG, Wooten GF (2005) Clinical practice. Diagnosis and initial management of Parkinson’s disease. N Engl J Med 353(10):1021–1027. doi:10.1056/NEJMcp043908

    Article  CAS  PubMed  Google Scholar 

  3. Wright JW, Kawas LH, Harding JW (2015) The development of small molecule angiotensin IV analogs to treat Alzheimer’s and Parkinson’s diseases. Prog Neurobiol 125:26–46. doi:10.1016/j.pneurobio.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  4. Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311(16):1670–1683. doi:10.1001/jama.2014.3654

    Article  PubMed  Google Scholar 

  5. Hensley K, Harris-White ME (2015) Redox regulation of autophagy in healthy brain and neurodegeneration. Neurobiol Dis 84:50–59. doi:10.1016/j.nbd.2015.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16(6):653–661. doi:10.1038/nm.2165

    Article  CAS  PubMed  Google Scholar 

  7. Li YH, Fu HL, Tian ML, Wang YQ, Chen W, Cai LL, Zhou XH, Yuan HB (2016) Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-kappaB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice. Sci Rep 6:19869. doi:10.1038/srep19869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Orike N, Middleton G, Borthwick E, Buchman V, Cowen T, Davies AM (2001) Role of PI 3-kinase, Akt and Bcl-2-related proteins in sustaining the survival of neurotrophic factor-independent adult sympathetic neurons. J Cell Biol 154(5):995–1005. doi:10.1083/jcb.200101068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95–102. doi:10.1016/j.tibs.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  10. Blum D, Torch S, Nissou MF, Benabid AL, Verna JM (2000) Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neurosci Lett 283(3):193–196

    Article  CAS  PubMed  Google Scholar 

  11. Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18(10):1162–1164. doi:10.1096/fj.04-1551fje

    CAS  PubMed  Google Scholar 

  12. Guo B, Xu D, Duan H, Du J, Zhang Z, Lee SM, Wang Y (2014) Therapeutic effects of multifunctional tetramethylpyrazine nitrone on models of Parkinson’s disease in vitro and in vivo. Biol Pharm Bull 37(2):274–285

    Article  CAS  PubMed  Google Scholar 

  13. Lu C, Zhang J, Shi X, Miao S, Bi L, Zhang S, Yang Q, Zhou X, Zhang M, Xie Y, Miao Q, Wang S (2014) Neuroprotective effects of tetramethylpyrazine against dopaminergic neuron injury in a rat model of Parkinson’s disease induced by MPTP. Int J Biol Sci 10(4):350–357. doi:10.7150/ijbs.8366

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yan S, Chen L, Wei X, Cheng L, Kong L, Liu X, Zhang X, Liu H (2015) Tetramethylpyrazine analogue CXC195 ameliorates cerebral ischemia–reperfusion injury by regulating endothelial nitric oxide synthase phosphorylation via PI3K/Akt signaling. Neurochem Res 40(3):446–454. doi:10.1007/s11064-014-1485-x

    Article  CAS  PubMed  Google Scholar 

  15. Ou Y, Dong X, Liu XY, Cheng XC, Cheng YN, Yu LG, Guo XL (2010) Mechanism of tetramethylpyrazine analogue CXC195 inhibition of hydrogen peroxide-induced apoptosis in human endothelial cells. Biol Pharm Bull 33(3):432–438

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Wei X, Hou Y, Liu X, Li S, Sun B, Liu X, Liu H (2014) Tetramethylpyrazine analogue CXC195 protects against cerebral ischemia/reperfusion-induced apoptosis through PI3K/Akt/GSK3beta pathway in rats. Neurochem Int 66:27–32. doi:10.1016/j.neuint.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  17. Deng L, Guo X, Zhai L, Song Y, Chen H, Zhan P, Wu J, Liu X (2012) Ligustrazine derivatives. Part 4: design, synthesis, and biological evaluation of novel ligustrazine-based stilbene derivatives as potential cardiovascular agents. Chem Biol Drug Des 79(5):731–739. doi:10.1111/j.1747-0285.2012.01332.x

    Article  CAS  PubMed  Google Scholar 

  18. Ng SS, Tsao MS, Nicklee T, Hedley DW (2001) Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin Cancer Res 7(10):3269–3275

    CAS  PubMed  Google Scholar 

  19. Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X (2014) Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 79:380–388. doi:10.1016/j.neuropharm.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  20. Zhu KY, Fu Q, Leung KW, Wong ZC, Choi RC, Tsim KW (2011) The establishment of a sensitive method in determining different neurotransmitters simultaneously in rat brains by using liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 879(11–12):737–742. doi:10.1016/j.jchromb.2011.02.011

    Article  CAS  Google Scholar 

  21. Zhang K, Tarazi FI, Davids E, Baldessarini RJ (2002) Plasticity of dopamine D4 receptors in rat forebrain: temporal association with motor hyperactivity following neonatal 6-hydroxydopamine lesioning. Neuropsychopharmacology 26(5):625–633. doi:10.1016/S0893-133X(01)00404-3

    Article  CAS  PubMed  Google Scholar 

  22. Liu H, Wei X, Chen L, Liu X, Li S, Liu X, Zhang X (2013) Tetramethylpyrazine analogue CXC195 protects against cerebral ischemia/reperfusion injury in the rat by an antioxidant action via inhibition of NADPH oxidase and iNOS expression. Pharmacology 92(3–4):198–206. doi:10.1159/000354722

    Article  CAS  PubMed  Google Scholar 

  23. Blandini F, Armentero MT, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14(Suppl 2):S124–S129. doi:10.1016/j.parkreldis.2008.04.015

    Article  PubMed  Google Scholar 

  24. Tsuchioka A, Oana F, Suzuki T, Yamauchi Y, Ijiro T, Kaidoh K, Hiratochi M (2015) Duration of drug action of dopamine D2 agonists in mice with 6-hydroxydopamine-induced lesions. Neuroreport 26(18):1126–1132. doi:10.1097/WNR.0000000000000484

    Article  CAS  PubMed  Google Scholar 

  25. Hernandes MS, Santos GD, Cafe-Mendes CC, Lima LS, Scavone C, Munhoz CD, Britto LR (2013) Microglial cells are involved in the susceptibility of NADPH oxidase knockout mice to 6-hydroxy-dopamine-induced neurodegeneration. PloS One 8(9):e75532. doi:10.1371/journal.pone.0075532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Toyoshi T, Ukai M, Kameyama T (1995) Intrastriatal injection of opioid receptor agonists inhibits apomorphine-induced behavior in 6-hydroxydopamine-treated mice. Eur J Pharmacol 294(2–3):637–643

    Article  CAS  PubMed  Google Scholar 

  27. Schwarting RK, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50(2–3):275–331

    Article  CAS  PubMed  Google Scholar 

  28. Hudson JL, van Horne CG, Stromberg I, Brock S, Clayton J, Masserano J, Hoffer BJ, Gerhardt GA (1993) Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res 626(1–2):167–174

    Article  CAS  PubMed  Google Scholar 

  29. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4(5):365–375. doi:10.1038/nrn1100

    Article  CAS  PubMed  Google Scholar 

  30. Nataraj J, Manivasagam T, Justin Thenmozhi A, Essa MM (2016) Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr Neurosci. doi:10.1080/1028415X.2015.1135559

    Google Scholar 

  31. Maiese K (2016) Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 82(5):1245–1266. doi:10.1111/bcp.12804

    Article  CAS  PubMed  Google Scholar 

  32. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14(4):478–500. doi:10.1007/s10495-008-0309-3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97(6):2875–2880. doi:10.1073/pnas.040556597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cha GH, Kim S, Park J, Lee E, Kim M, Lee SB, Kim JM, Chung J, Cho KS (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci USA 102(29):10345–10350. doi:10.1073/pnas.0500346102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mirzayans R, Andrais B, Kumar P, Murray D (2016) The growing complexity of cancer cell response to DNA-damaging agents: caspase 3 mediates cell death or survival?. Int J Mol Sci. doi:10.3390/ijms17050708

    PubMed  PubMed Central  Google Scholar 

  36. Ullah F, Ali T, Ullah N, Kim MO (2015) Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochem Int 90:114–124. doi:10.1016/j.neuint.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  37. Wei X, He S, Wang Z, Wu J, Zhang J, Cheng Y, Yang J, Xu X, Chen Z, Ye J, Chen L, Lin L, Xiao J (2014) Fibroblast growth factor 1attenuates 6-hydroxydopamine-induced neurotoxicity: an in vitro and in vivo investigation in experimental models of parkinson’s disease. Am J Transl Res 6(6):664–677

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Greene LA, Levy O, Malagelada C (2011) Akt as a victim, villain and potential hero in Parkinson’s disease pathophysiology and treatment. Cell Mol Neurobiol 31(7):969–978. doi:10.1007/s10571-011-9671-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amiri E, Ghasemi R, Moosavi M (2016) Agmatine protects against 6-OHDA-induced apoptosis, and ERK and Akt/GSK disruption in SH-SY5Y cells. Cell Mol Neurobiol 36(6):829–838. doi:10.1007/s10571-015-0266-7

    Article  CAS  PubMed  Google Scholar 

  40. Das G, Misra AK, Das SK, Ray K, Ray J (2012) Role of tau kinases (CDK5R1 and GSK3B) in Parkinson’s disease: a study from India. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2010.10.016

    PubMed  Google Scholar 

  41. Kalinderi K, Fidani L, Katsarou Z, Clarimon J, Bostantjopoulou S, Kotsis A (2011) GSK3beta polymorphisms, MAPT H1 haplotype and Parkinson’s disease in a Greek cohort. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2009.05.007

    PubMed  Google Scholar 

  42. Hernandez-Baltazar D, Mendoza-Garrido ME, Martinez-Fong D (2013) Activation of GSK-3beta and caspase-3 occurs in Nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine. PloS One 8(8):e70951. doi:10.1371/journal.pone.0070951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang LQ, Sa F, Chong CM, Wang Y, Zhou ZY, Chang RC, Chan SW, Hoi PM, Yuen Lee SM (2015) Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3beta pathways. J Ethnopharmacol 170:8–15. doi:10.1016/j.jep.2015.04.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 81571171) and Shandong Province Science and Technology Plan (No. 2014GSF118003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Cheng, L., Wei, X. et al. Tetramethylpyrazine Analogue CXC195 Protects Against Dopaminergic Neuronal Apoptosis via Activation of PI3K/Akt/GSK3β Signaling Pathway in 6-OHDA-Induced Parkinson’s Disease Mice. Neurochem Res 42, 1141–1150 (2017). https://doi.org/10.1007/s11064-016-2148-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2148-x

Keywords

Navigation