Skip to main content
Log in

Blue Light Action on Mitochondria Leads to Cell Death by Necroptosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Blue light impinging on the many mitochondria associated with retinal ganglion cells (RGCs) in situ has the potential of eliciting necroptosis through an action on RIP1/RIP3 to stimulate RGC death in diseases like glaucoma and diabetic retinopathy. Cells in culture die when exposed to blue light. The death process is mitochondria-dependent and is known to involve a decrease in the production of ATP, a generation of ROS, the activation of poly-(ADP-ribose) polymerase, the stimulation of apoptosis-inducing factor (AIF) as well as the up-regulation of heme-oxygenase-1 (HO-1). Our present results show that blue light-induced activation of AIF is not directly linked with the stimulation of RIP1/RIP3. Down-regulation of RIP1/RIP3 did not influence AIF. AIF activation therefore appears to enhance the rate of necroptosis by a direct action on DNA breakdown, the end stage of necroptosis. This implies that silencing of AIF mRNA may provide a degree of protection to blue light insult. Also, necrostatin-1 attenuated an increased turnover of HO-1 mRNA caused by blue light to suggest an indirect inhibition of necroptosis, caused by the action of necrostatin-1 on RIP1/RIP3 to reduce oxidative stress. This is supported by the finding that gene silencing of RIP1 and RIP3 has no effect on HO-1. We therefore conclude that inhibitors of RIP kinase might be more specific than necrostatin-1 as a neuroprotective agent to blunt solely necroptosis caused by blue light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  CAS  PubMed  Google Scholar 

  2. Osborne NN, Alvarez CN, del Olmo Aguado S (2014) Targeting mitochondrial dysfunction as in aging and glaucoma. Drug Discov Today 19:1613–1622

    Article  CAS  PubMed  Google Scholar 

  3. Schon EA, Manfredi G (2003) Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 111:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bristow EA, Griffiths PG, Andrews RM, Johnson MA, Turnbull DM (2002) The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol 120:791–796

    Article  PubMed  Google Scholar 

  5. Wang YQ, Wang L, Zhang MY, Wang T, Bao HJ, Liu WL, Dai DK, Zhang L, Chang P, Dong WW, Chen XP, Tao LY (2012) Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res 37:1849–1858

    Article  CAS  PubMed  Google Scholar 

  6. Osborne NN, Kamalden TA, Majid AS, del Olmo-Aguado S, Manso AG, Ji D (2010) Light effects on mitochondrial photosensitizers in relation to retinal degeneration. Neurochem Res 35:2027–2034

    Article  CAS  PubMed  Google Scholar 

  7. Osborne NN, Lascaratos G, Bron AJ, Chidlow G, Wood JP (2006) A hypothesis to suggest that light is a risk factor in glaucoma and the mitochondrial optic neuropathies. Br J Ophthalmol 90:237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Osborne NN, Li G-Y, Ji D, Mortiboys HJ, Jackson S (2008) Light affects mitochondria to cause apoptosis to cultured cells: possible relevance to ganglion cell death in certain optic neuropathies. J Neurochem 105:2013–2028

    Article  CAS  PubMed  Google Scholar 

  9. Osborne NN, Núñez-Álvarez C, del Olmo-Aguado S (2014) The effect of visual blue light on mitochondrial function associated with retinal ganglions cells. Exp Eye Res 128:8–14

    Article  CAS  PubMed  Google Scholar 

  10. Bell JE, Hall C (1981) Hemoproteins. In: Bell JE (ed) Spectroscopy in biochemistry. CRC Press Inc., Boca Raton, pp 42–46

    Google Scholar 

  11. Kunz D, Winkler K, Elger CE, Kunz WS (2002) Functional imaging of mitochondrial redox state. Methods Enzymol 352:135–150

    Article  CAS  PubMed  Google Scholar 

  12. Mellerio J (1994) Light effects on the retina. In: Albert DM, Jakobiec FA (eds) Principles and practice of ophthalmology: basic sciences. Saunders, Philadelphia, pp 1326–1345

    Google Scholar 

  13. Li G-Y, Osborne NN (2008) Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose)polymerase and apoptosis-inducing factor. Brain Res 1188:35–43

    Article  CAS  PubMed  Google Scholar 

  14. Ji D, Kamalden TA, del Olmo-Aguado S, Osborne NN (2011) Light- and sodium azide-induced death of RGC-5 cells in culture occurs via different mechanisms. Apoptosis 16:425–437

    Article  CAS  PubMed  Google Scholar 

  15. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  16. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, Goossens V, Roelandt R, Van Hauwermeiren F, Libert C, Declercq W, Callewaert N, Prendergast GC, Degterev A, Yuan J, Vandenabeele P (2012) Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 3:e437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T (2010) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 3:re4

    Article  PubMed  Google Scholar 

  20. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  CAS  PubMed  Google Scholar 

  21. Dvoriantchikova G, Degterev A, Ivanov D (2014) Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia-reperfusion-induced retinal damage. Exp Eye Res 123:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosenbaum DM, Degterev A, David J, Rosenbaum PS, Roth S, Grotta JC, Cuny GD, Yuan J, Savitz SI (2010) Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res 88:1569–1576

    CAS  PubMed  Google Scholar 

  23. Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147

    Article  CAS  PubMed  Google Scholar 

  24. Osborne NN (2010) Mitochondria: their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res 90:750–757

    Article  CAS  PubMed  Google Scholar 

  25. Huang JF, Shang L, Zhang MQ, Wang H, Chen D, Tong JB, Huang H, Yan XX, Zeng LP, Xiong K (2013) Differential neuronal expression of receptor interacting protein 3 in rat retina: involvement in ischemic stress response. BMC Neurosci 14:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang YF, He W, Zhang C, Liu XJ, Lu Y, Wang H, Zhang ZH, Chen X, Xu DX (2014) Role of receptor interacting protein (RIP)1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice. Toxicol Lett 225:445–453

    Article  CAS  PubMed  Google Scholar 

  27. Satoh T, Baba M, Nakatsuka D, Ishikawa Y, Aburatani H, Furuta K, Ishikawa T, Hatanaka H, Suzuki M, Watanabe Y (2003) Role of heme oxygenase-1 protein in the neuroprotective effects of cyclopentenone prostaglandin derivatives under oxidative stress. Eur J Neurosci 17:2249–2255

    Article  PubMed  Google Scholar 

  28. Van Bergen NJ, Wood JP, Chidlow G, Trounce IA, Casson RJ, Ju WK, Weinreb RN, Crowston JG (2009) Recharacterization of the RGC-5 retinal ganglion cell line. Invest Ophthalmol Vis Sci 50:4267–4272

    Article  PubMed  Google Scholar 

  29. del Olmo-Aguado S, Manso AG, Osborne NN (2012) Light might directly affect retinal ganglion cell mitochondria to potentially influence function. Photochem Photobiol 88:1346–1355

    Article  PubMed  Google Scholar 

  30. Artus C, Boujrad H, Bouharrour A, Brunelle MN, Hoos S, Yuste VJ, Lenormand P, Rousselle JC, Namane A, England P, Lorenzo HK, Susin SA (2010) AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. EMBO J 29:1585–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  CAS  PubMed  Google Scholar 

  32. Delavallee L, Cabon L, Galan-Malo P, Lorenzo HK, Susin SA (2011) AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics. IUBMB Life 63:221–232

    Article  CAS  PubMed  Google Scholar 

  33. Sosna J, Voigt S, Mathieu S, Lange A, Thon L, Davarnia P, Herdegen T, Linkermann A, Rittger A, Chan FK, Kabelitz D, Schutze S, Adam D (2014) TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol Life Sci 71:331–348

    Article  CAS  PubMed  Google Scholar 

  34. Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, Vavvas DG (2013) Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res 37:114–140

    Article  PubMed  Google Scholar 

  35. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459

    Article  CAS  PubMed  Google Scholar 

  36. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Dong J, Cull G, Fortune B, Cioffi GA (2003) Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest Ophthalmol Vis Sci 44:2–9

    Article  PubMed  Google Scholar 

  38. Cuenca N, Fernandez-Sanchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I (2014) Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 43:17–75

    Article  CAS  PubMed  Google Scholar 

  39. Osborne NN, Wood JP, Chidlow G (2005) Invited review: neuroprotective properties of certain beta-adrenoceptor antagonists used for the treatment of glaucoma. J Ocul Pharmacol Ther 21:175–181

    Article  CAS  PubMed  Google Scholar 

  40. Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25:490–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trichonas G, Murakami Y, Thanos A, Morizane Y, Kayama M, Debouck CM, Hisatomi T, Miller JW, Vavvas DG (2010) Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc Natl Acad Sci USA 107:21695–21700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ 14:400–410

    Article  CAS  PubMed  Google Scholar 

  43. Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS, Tran JH, Nedospasov SA, Liu ZG (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279:10822–10828

    Article  CAS  PubMed  Google Scholar 

  44. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    Article  CAS  PubMed  Google Scholar 

  45. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    Article  CAS  PubMed  Google Scholar 

  46. Polster BM (2013) AIF, reactive oxygen species, and neurodegeneration: a “complex” problem. Neurochem Int 62:695–702

    Article  CAS  PubMed  Google Scholar 

  47. Öxler EM, Dolga A, Culmsee C (2012) AIF depletion provides neuroprotection through a preconditioning effect. Apoptosis 17:1027–1038

    Article  PubMed  Google Scholar 

  48. Amersi F, Buelow R, Kato H, Ke B, Coito AJ, Shen XD, Zhao D, Zaky J, Melinek J, Lassman CR, Kolls JK, Alam J, Ritter T, Volk HD, Farmer DG, Ghobrial RM, Busuttil RW, Kupiec-Weglinski JW (1999) Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. J Clin Invest 104:1631–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ursu ON, Sauter M, Ettischer N, Kandolf R, Klingel K (2014) Heme oxygenase-1 mediates oxidative stress and apoptosis in coxsackievirus B3-induced myocarditis. Cell Physiol Biochem 33:52–66

    Article  CAS  PubMed  Google Scholar 

  50. You Z, Savitz SI, Yang J, Degterev A, Yuan J, Cuny GD, Moskowitz MA, Whalen MJ (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28:1564–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Fundación BBVA and the technical assistance of Enol Artime. Financial support is gratefully acknowledged from the Fundación BBVA and the Fundación Endesa. NNO and is a Cátedra de Biomedicina (Chair in Biomedicine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neville N. Osborne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Olmo-Aguado, S., Núñez-Álvarez, C. & Osborne, N.N. Blue Light Action on Mitochondria Leads to Cell Death by Necroptosis. Neurochem Res 41, 2324–2335 (2016). https://doi.org/10.1007/s11064-016-1946-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1946-5

Keywords

Navigation