Skip to main content
Log in

Competition, Selectivity and Efficacy of Analogs of A-84543 for Nicotinic Acetylcholine Receptors with Repositioning of Pyridine Nitrogen

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nicotinic acetylcholine receptors (nAChRs) play a crucial role in a number of clinically relevant mental and neurological pathways, as well as autonomic and immune functions. The development of subtype-selective ligands for nAChRs therefore is potentially useful for targeted therapeutic management of conditions where nAChRs are involved. We tested if selectivity for a particular nAChR subtype can be achieved through small structural modifications of a lead compound containing the nicotinic pharmacophore by changing the distance between the electronegative elements. For this purpose, analogs of A-84543 were designed, synthesized and characterized as potentially new nAChR subtype-selective ligands. Compounds were tested for their binding properties in rat cerebral cortical tissue homogenates, and subtype-selectivity was determined using stably transfected HEK cells expressing different nAChR subtypes. All compounds synthesized were found to competitively displace [3H]-epibatidine ([3H]EB) from the nAChR binding site. Of all the analogues, H-11MNH showed highest affinity for nAChRs compared to a ~fivefold to tenfold lower affinity of A-84543. All other compounds had affinities >10,000 nM. Both A-84543 and H-11MNH have highest affinity for α2β2 and α4β2 nAChRs and show moderate affinity for β4- and α7-containing receptors. H-11MNH was found to be a full agonist with high potency at α3β4, while A-84543 is a partial agonist with low potency. Based on their unique pharmacological binding properties we suggest that A-84543 and its desmethylpyrrolidine analog can be useful as pharmacological ligands for studying nAChRs if selective pharmacological and/or genetic tools are used to mask the function of other receptors subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For nAChRs the *, as per the International Union of Basic and Clinical Pharmacology (IUPHAR), denotes that there may be additional subunits which are presently unknown.

Abbreviations

CTX:

Cerebral cortex

DHβE:

Dihydro-β-erythroidine

[3H]EB:

[3H]epibatidine

FB:

Rat forebrain

nAChRs:

Nicotinic acetylcholine receptors

References

  1. Jensen AA, Bente F, Liljefors T, Krogsgard-Larsen P (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 48(15):4705–4745

    Article  CAS  PubMed  Google Scholar 

  2. Hurst R, Rollema H, Bertrand D (2013) Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther 137(1):22–54

    Article  CAS  PubMed  Google Scholar 

  3. Dineley KT, Pandya AA, Yakel JL (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 36(2):96–108

    Article  CAS  PubMed  Google Scholar 

  4. Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A (2015) The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 6:22. doi:10.3389/fphys.2015.00022

    Article  PubMed Central  PubMed  Google Scholar 

  5. Martelli D, McKinley MJ, McAllen RM (2014) The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci 182:65–69

    Article  CAS  PubMed  Google Scholar 

  6. Winston N, Vernino S (2010) Recent advances in autoimmune autonomic ganglionopathy. Curr Opin Neurol 23(5):514–518

    Article  CAS  PubMed  Google Scholar 

  7. Muppidi S, Vernino S (2013) Autoimmune autonomic failure. Handb Clin Neurol. 117:321–327

    Article  PubMed  Google Scholar 

  8. Bagdas D, Al-Sharari SD, Freitas K, Tracy M, Damaj MI (2015) The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain. Biochem Pharmacol. doi:10.1016/j.bcp.2015.04.013

    PubMed  Google Scholar 

  9. Zoli M, Pistillo F, Gotti C (2014) Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology 96(PtB):302–311. doi:10.1016/j.neuropharm.2014.11.003

    PubMed  Google Scholar 

  10. Papke RL (2014) Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem Pharmacol 89(1):1–11

    Article  CAS  PubMed  Google Scholar 

  11. Changeux JP (2012) The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily. J Biol Chem 287(48):40207–40215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Bertrand S, Bertrand D (2004) Overview of electrophysiological characterization of neuronal nicotinic acetylcholine receptors. Curr Protoc Pharmacol Chapter 11(Unit11):7. doi:10.1002/0471141755.ph1107s23

    Google Scholar 

  13. Gahring LC, Rogers SW (2006) Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells. AAPS J 7(4):E885–E894

    Article  PubMed Central  PubMed  Google Scholar 

  14. Popot JL, Changeux JP (1984) Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol Rev 64(4):1162–1239

    CAS  PubMed  Google Scholar 

  15. Lindstrom J, Anand R, Peng X, Gerzanich V, Wang F, Li Y (1995) Neuronal nicotinic receptor subtypes. Ann N Y Acad Sci 757:100–116

    Article  CAS  PubMed  Google Scholar 

  16. Le Novère N, Corringer PJ, Changeux JP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53(4):447–456

    Article  PubMed  Google Scholar 

  17. Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41(1):31–37

    CAS  PubMed  Google Scholar 

  18. Pabreza LA, Dhawan S, Kellar KJ (1991) [3H]cytisine binding to nicotinic cholinergic receptors in brain. Mol Pharmacol 39(1):9–12

    CAS  PubMed  Google Scholar 

  19. Houghtling RA, Davila-Garcia MI, Kellar KJ (1995) Characterization of (6)-[3H]epibatidine binding to nicotinic cholinergic receptors in rat and human brain. Mol Pharmacol 48:280–287

    CAS  PubMed  Google Scholar 

  20. Dávila-García MI, Musachio JL, Perry DC, XiaoY Horti A, London ED, Dannals RF, Kellar KJ (1997) [125I]IPH, an epibatidine analog, binds with high affinity to neuronal nicotinic cholinergic receptors. J Pharmacol Exp Ther 282:445–451

    PubMed  Google Scholar 

  21. Spang JE, Bertrand S, Westera G, Patt JT, Schubiger PA, Bertrand D (2000) Chemical modification of epibatidine causes a switch from agonist to antagonist and modifies its selectivity for neuronal nicotinic acetylcholine receptors. Chem Biol 7(7):545

    Article  CAS  PubMed  Google Scholar 

  22. Abreo MA, Lin NH, Garvey DS, Gunn DE, Hettinger AM, Wasicak JT, Pavlik PA, Martin YC, Donnelly-Roberts DL, Anderson DJ, Sullivan JP, Williams M, Arneric SP, Holladay MW (1996) Novel 3-pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. J Med Chem 39:817–825

    Article  CAS  PubMed  Google Scholar 

  23. Sullivan JP, Donnelly-Roberts D, Briggs CA, Anderson DJ, Gopalakrishnan M, Piattoni-Kaplan M, Campbell JE, McKenna DG, Molinari E, Hettinger AM, Garvey DS, Wasicak JT, Holladay MW, Williams M, Arneric SP (1996) A-85380 [3-(2(S)-azetidinylmethoxy) pyridine]: in vitro pharmacological properties of a novel, high affinity alpha 4 beta 2 nicotinic acetylcholine receptor ligand. Neuropharmacology 35(6):725–734

    Article  CAS  PubMed  Google Scholar 

  24. Xiao Y, Baydyuk M, Wang HP, Davis HE, Kellar KJ (2004) Pharmacology of the agonist binding sites of rat neuronal nicotinic receptor subtypes expressed in HEK 293 cells. Bioorg Med Chem Lett 14(8):1845–1848

    Article  CAS  PubMed  Google Scholar 

  25. Xiao Y, Kellar KJ (2004) The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 310:98–107

    Article  CAS  PubMed  Google Scholar 

  26. Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J, Sands SB, Davis TI, Lebel LA, Fox CB, Shrikhande A, Heym JH, Schaeffer E, Rollema H, Lu Y, Mansbach R, Chambers LK, Rovetti CC, Schulz DW, Tingley FD 3rd, O’Neill BT (2005) Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem 48(10):3474–3477

    Article  CAS  PubMed  Google Scholar 

  27. Chellappan SK, Xiao Y, Tueckmantel W, Kellar KJ, Kozikowski AP (2006) Synthesis and pharmacological evaluation of novel 9- and 10-substituted cytisine derivatives. Nicotinic ligands of enhanced subtype selectivity. J Med Chem 49(9):2673–2676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Grady SR, Drenan RM, Breining SR, Yohannes D, Wageman CR, Fedorov NB, McKinney S, Whiteaker P, Bencherif M, Lester HA, Marks MJ (2010) Structural differences determine the relative selectivity of nicotinic compounds for native alpha 4 beta 2*-, alpha 6 beta 2*-, alpha 3 beta 4*- and alpha 7-nicotine acetylcholine receptors. Neuropharmacology 58(7):1054–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Beers WH, Reich E (1970) Structure and activity of acetylcholine. Nature 228:917–922

    Article  CAS  PubMed  Google Scholar 

  30. Glennon RA, Dukat M (2000) Central nicotinic receptor ligands and pharmacophores. Pharm Acta Helv 74:103–114

    Article  CAS  PubMed  Google Scholar 

  31. Koren AO, Horti AG, Mukhin AG, Gündisch D, Kimes AS, Dannals RF, London ED (1998) 2-, 5-, and 6-Halo-3-(2(S)-azetidinylmethoxy)pyridines: synthesis, affinity for nicotinic acetylcholine receptors, and molecular modeling. J Med Chem 41(19):3690–3698

    Article  CAS  PubMed  Google Scholar 

  32. Lin NH, Gunn DE, Li Y, He Y, Bai H, Ryther KB, Kuntzweiler T, Donnelly-Roberts DL, Anderson DJ, Campbell JE, Sullivan JP, Arneric SP, Holladay MW (1998) Synthesis and structure-activity relationships of pyridine-modified analogs of 3-[2-((S)-pyrrolidinyl)methoxy]pyridine, A-84543, a potent nicotinic acetylcholine receptor agonist. Bioorg Med Chem Lett 8(3):249–254

    Article  CAS  PubMed  Google Scholar 

  33. Fan H, Scheffel UA, Rauseo P, Xiao Y, Dogan AS, Yokoi F, Hilton J, Kellar KJ, Wong DF, Musachio JL (2001) [125/123I] 5-Iodo-3-pyridyl ethers. Syntheses and binding to neuronal nicotinic acetylcholine receptors. Nucl Med Biol 28(8):911–921

    Article  CAS  PubMed  Google Scholar 

  34. Xiao Y, Fan H, Musachio JL, Wei ZL, Chellappan SK, Kozikowski AP, Kellar KJ (2006) Sazetidine-A, a novel ligand that desensitizes alpha4beta2 nicotinic acetylcholine receptors without activating them. Mol Pharmacol 70(4):1454–1460

    Article  CAS  PubMed  Google Scholar 

  35. Xiao Y, Meyer EL, Thompson JM, Surin A, Wroblewski J, Kellar KJ (1998) Rat alpha3/beta4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: pharmacology of ligand binding and function. Mol Pharmacol 54(2):322–333

    CAS  PubMed  Google Scholar 

  36. Perry DC, Xiao Y, Nguyen HN, Musachio JL, Dávila-García MI, Kellar KJ (2002) Measuring nicotinic receptors with characteristics of α4β2, α3β2, and α3β4 subtypes in rat tissues by autoradiography. J Neurochem 82:468–481

    Article  CAS  PubMed  Google Scholar 

  37. Xiao Y, Abdrakhmanova GR, Baydyuk M, Hernandez S, Kellar KJ (2009) Rat neuronal nicotinic acetylcholine receptors containing alpha7 subunit: pharmacological properties of ligand binding and function. Acta Pharmacol Sin 30(6):842–850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Zoli M, Moretti M, Zanardi A, McIntosh MJ, Clementi F, Gotti C (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 22(20):8785–8789

    CAS  PubMed  Google Scholar 

  39. Exley R, Clements MA, Hartung H, McIntosh JM, Cragg SJ (2008) Alpha6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology 33:2158–2166

    Article  CAS  PubMed  Google Scholar 

  40. Picciotto MR, Kenny PJ (2013) Molecular mechanisms underlying behaviors related to nicotine addiction. Cold Spring Harb Perspect Med 3(1):a012112. doi:10.1101/cshperspect.a012112

    Article  PubMed Central  PubMed  Google Scholar 

  41. Zhang W, Edvinsson L, Lee TJ (1998) Mechanism of nicotine-induced relaxation in the porcine basilar artery. J Pharmacol Exp Ther 284(2):790–797

    CAS  PubMed  Google Scholar 

  42. Lee RH, Liu YQ, Chen PY, Liu CH, Chen MF, Lin HW, Kuo JS, Premkumar LS, Lee TJ (2011) Sympathetic α3β2-nAChRs mediate cerebral neurogenic nitrergic vasodilation in the swine. Am J Physiol Heart Circ Physiol 301(2):H344–H354

    Article  CAS  PubMed  Google Scholar 

  43. Mitsunobu O, Wada M, Sano T (1972) Stereospecific and stereoselective reactions. I. Preparation of amines from alcohols. J Am Chem Soc 94(2):679–680

    Article  Google Scholar 

  44. Brown LL, Kulkarni S, Pavlova AO, Koren AO, Mukhin AG, Newman AH, Horti AG (2002) Synthesis and biological evaluation of novel carbon-11 labeled pyridyl ethers: candidate ligands for in vivo imaging of α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) in the brain with positron emission tomography. J Med Chem 45:2841–2849

    Article  CAS  PubMed  Google Scholar 

  45. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108

    Article  CAS  PubMed  Google Scholar 

  46. Lukas RJ, Cullen MJ (1988) An isotopic rubidium ion efflux assay for the functional characterization of nicotinic acetylcholine receptors on clonal cell lines. Anal Biochem 175:212–218

    Article  CAS  PubMed  Google Scholar 

  47. Razani-Boroujerdi S, Boyd R, Dávila-García MI, Nandi JS, Mishra N, Singh SP, Pena-Philippides JC, Langley R, Sopori ML (2007) T cells express alpha7-nicotinic acetylcholine receptor subunits that require a functional TCR and Leukocyte-specific protein tyrosine kinase for nicotine-induced Ca2+ response to increase intracellular. J Immunol 179:2889–2898

    Article  CAS  PubMed  Google Scholar 

  48. Wei ZL, Xiao Y, Yuan H, Baydyuk M, Petukhov PA, Musachio JL, Kellar KJ, Kozikowski AP (2005) Novel pyridyl ring C5 substituted analogues of epibatidine and 3-(1-methyl-2(S)-pyrrolidinylmethoxy)pyridine (A-84543) as highly selective agents for neuronal nicotinic acetylcholine receptors containing beta2 subunits. J Med Chem 48(6):1721–1724

    Article  CAS  PubMed  Google Scholar 

  49. Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70(3):801–805

    Article  CAS  PubMed  Google Scholar 

  50. Dávila-García MI, Houghtling RA, Kellar KJ (1995) [3H]Epibatidine binds two non-α4ß2 high affinity sites in IMR-32 cells. Soc Neurosci Abstr 527.8, 21(2):1333

  51. Pandya AA, Yakel JL (2013) Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem Pharmacol 86(8):1054–1062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Changeux JP (2013) The concept of allosteric modulation: an overview. Drug Discov Today Technol 10(2):e223–e228

    Article  PubMed  Google Scholar 

  53. Nirogi R, Goura V, Abraham R, Jayarajan P (2013) α4β2* neuronal nicotinic receptor ligands (agonist, partial agonist and positive allosteric modulators) as therapeutic prospects for pain. Eur J Pharmacol 712(1–3):22–29

    Article  CAS  PubMed  Google Scholar 

  54. Uteshev VV (2014) The therapeutic promise of positive allosteric modulation of nicotinic receptors. Eur J Pharmacol 727:181–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Institutes of Health grants 5R24MH067627 and NIGMS-NIH S06 GM08016-34 to MDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha I. Dávila-García.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Special Issue: In honor of Dr. Lynn Wecker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunjirin, A.E., Fortunak, J.M., Brown, L.L. et al. Competition, Selectivity and Efficacy of Analogs of A-84543 for Nicotinic Acetylcholine Receptors with Repositioning of Pyridine Nitrogen. Neurochem Res 40, 2131–2142 (2015). https://doi.org/10.1007/s11064-015-1705-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1705-z

Keywords

Navigation