Skip to main content
Log in

Axonal Accumulation of Lysosomal-Associated Membrane Protein 1 (LAMP1) Accompanying Alterations of Autophagy Dynamics in the Rat Hippocampus Upon Seizure-Induced Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We found a dramatic upregulation in the expression of LC3 in the hippocampus of rats upon status epilepticus (SE). However, the enhancement in LC3 expression might be caused by a reduction in lysosomal activity or by alterations in autophagosome-lysosome fusion leading to a cytosolic vesicular retention. In order to dissect this aspect, we monitored the spatial and temporal expression of LC3 and LAMP1 in the hippocampus of rats with SE. The Western blot analysis showed that the expression of LAMP1 was slightly increased in hippocampal cells at 6, 24, and 48 h post-SE. However, immunofluorescence analysis showed dramatic spatial changes in LAMP1 distribution within the hippocampus. LAMP1 in controls was localised only in cytosol as dot like staining, however at 24 h post-SE LAMP1 was not only highly expressed, but accumulated in mossy fibers of dentate gyrus. In parallel, we found few scattered LC3-positive-dots in neurites of dentate gyrus which co-localise with LAMP1-positive structures. We conclude that SE not only increased autophagosomal abundance, but also lysosomal activities and a massive accumulation of LAMP1 in axons of dentate gyrus. This could support the hypothesis that the marked increased autophagosomal abundance in cytosol reflects an increase in the autophagic activity more than an inhibition of autophagosomal clearance. Although LAMP1 may have contributed to cell damage in the selective vulnerable hippocampal CA1-subfield, it is also possible that lysosomal/autophagic mechanisms in mossy fibers were compensatory and reflected an attempt to survive the epileptic insult by breaking down non-essential components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263(1–2):55–72

    Article  CAS  PubMed  Google Scholar 

  3. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889

    Article  CAS  PubMed  Google Scholar 

  4. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  5. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rami A, Kögel D (2008) Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? Autophagy 4(4):422–426

    Article  CAS  PubMed  Google Scholar 

  7. Rami A (2009) Review: Autophagy in neurodegeneration: Firefighter and/or incendiarist? Neuropathol Appl Neurobiol 35(5):449–461

    Article  CAS  PubMed  Google Scholar 

  8. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL et al (2006) Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 169(2):566–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steiger-Barraissoul S, Rami A (2009) Serum deprivation induced autophagy and predominantly an AIF-dependent apoptosis in hippocampal HT22 neurons. Apoptosis 14(11):1274–1288

    Article  CAS  PubMed  Google Scholar 

  10. Hernandez LD, Pypaert M, Flavell RA, Galan JE (2003) A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol 163(5):1123–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guimaraes CA, Benchimol M, Amarante-Mendes GP, Linden R (2003) Alternative programs of cell death in developing retinal tissue. J Biol Chem 278(43):41938–41946

    Article  CAS  PubMed  Google Scholar 

  12. Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63(9):2103–2108

    CAS  PubMed  Google Scholar 

  13. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11(4):448–457

    Article  CAS  PubMed  Google Scholar 

  14. Reggiori F, Klionsky DJ (2002) Autophagy in the eukaryotic cell. Eukaryot Cell 1(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo C, Li B, Li Q, Chen X, Sun Y, Bao H, Dai D, Shen Y, Xu H, Ni H et al (2011) Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184:54–63

    Article  CAS  PubMed  Google Scholar 

  16. Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz N, Yue Z (2006) Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 26(31):8057–8068

    Article  CAS  PubMed  Google Scholar 

  17. Benz AP, Niquet J, Wasterlain CG, Rami A (2014) Status epilepticus in the immature rodent brain alters the dynamics of autophagy. Curr Neurovasc Res 11(2):125–135

    Article  CAS  PubMed  Google Scholar 

  18. Sankar R, Shin DH, Liu H, Mazarati A, de Vasconcelos AP, Wasterlain CG (1998) Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 18(20):8382–8393

    CAS  PubMed  Google Scholar 

  19. Niquet J, Auvin S, Archie M, Seo D, Allen S, Sankar R, Wasterlain CG (2007) Status epilepticus triggers caspase-3 activation and necrosis in the immature rat brain. Epilepsia 48(6):1203–1206

    Article  PubMed  Google Scholar 

  20. Borsello T, Croquelois K, Hornung J, Clarke PGH (2003) N-methyl-d-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur J Neurosci 18(3):473–485

    Article  PubMed  Google Scholar 

  21. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278(27):25009–25013

    Article  CAS  PubMed  Google Scholar 

  22. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    Article  CAS  PubMed  Google Scholar 

  23. Yu WH, Kumar A, Peterhoff C, Kulnane LS, Uchiyama Y, Lamb BT, Cuervo AM, Nixon RA (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36(12):2531–2540

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Li S, Chen X, Yang L, Zhang Y, Liu R, Tao L (2008) Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci Bull 24(3):143–149

    Article  PubMed  Google Scholar 

  25. Tolkovsky AM, Xue L, Fletcher GC, Borutaite V (2002) Mitochondrial disappearance from cells: A clue to the role of autophagy in programmed cell death and disease? Biochimie 84(2–3):233–240

    Article  CAS  PubMed  Google Scholar 

  26. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  CAS  PubMed  Google Scholar 

  28. Huang X, Zhang H, Yang J, Wu J, McMahon J, Lin Y, Cao Z, Gruenthal M, Huang Y (2010) Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis 40(1):193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eskelinen E (2006) Roles of LAMP1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27(5–6):495–502

    Article  CAS  PubMed  Google Scholar 

  30. Sadasivan S, Zhang Z, Larner SF, Liu MC, Zheng W, Kobeissy FH, Hayes RL, Wang KKW (2010) Acute NMDA toxicity in cultured rat cerebellar granule neurons is accompanied by autophagy induction and late onset autophagic cell death phenotype. BMC Neurosci 11:21

    Article  PubMed  PubMed Central  Google Scholar 

  31. Penas C, Font-Nieves M, Fores J, Petegnief V, Planas A, Navarro X, Casas C (2011) Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death Differ 18(10):1617–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122

    Article  PubMed  Google Scholar 

  33. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30(37):12535–12544

    Article  CAS  PubMed  Google Scholar 

  34. Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281(20):14474–14485

    Article  CAS  PubMed  Google Scholar 

  35. Broadwell RD, Cataldo AM (1984) The neuronal endoplasmic reticulum: its cytochemistry and contribution to the endomembrane system. II. Axons and terminals. J Comp Neurol 230(2):231–248

    Article  CAS  PubMed  Google Scholar 

  36. McGuinness L, Bardo SJ, Emptage NJ (2007) The lysosome or lysosome-related organelle may serve as a Ca2+ store in the boutons of hippocampal pyramidal cells. Neuropharmacology 52(1):126–135

    Article  CAS  PubMed  Google Scholar 

  37. Perrot R, Julien J (2009) Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments. FASEB J 23(9):3213–3225

    Article  CAS  PubMed  Google Scholar 

  38. Hernandez D, Torres CA, Setlik W, Cebrian C, Mosharov EV, Tang G, Cheng H, Kholodilov N, Yarygina O, Burke RE et al (2012) Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74(2):277–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 104(36):14489–14494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded in part by research Grant from the Adolf-Messer-Stiftung (Grant to Dr. A. Rami). We thank A. Konoplew for technical assistance and Prof. J. Stehle for scientific support of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rami.

Additional information

Special Issue: 40th Year of Neurochemical Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rami, A., Benz, A.P., Niquet, J. et al. Axonal Accumulation of Lysosomal-Associated Membrane Protein 1 (LAMP1) Accompanying Alterations of Autophagy Dynamics in the Rat Hippocampus Upon Seizure-Induced Injury. Neurochem Res 41, 53–63 (2016). https://doi.org/10.1007/s11064-015-1704-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1704-0

Keywords

Navigation