Skip to main content

Advertisement

Log in

Effects of ATP and NGF on Proliferation and Migration of Neural Precursor Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Purinergic receptors belong to the most ancient neurotransmitter system. While their relevance in neurotransmission is well characterized, it has become clear that they have many other cellular functions. During development, they participate in regulation of proliferation and differentiation of stem cells. Here, we used rat embryonic telencephalon neurosphere cultures to detect purinergic P2 receptor subtype expression and possible synergistic actions of these receptors with NGF. Neurospheres proliferate in the presence of EGF and FGF-2; however, upon depletion of these growth factors, they migrate and differentiate into neurons and glial phenotypes. Expression patterns of P2X and P2Y receptors changed along neural differentiation. Gene expression of P2X2–7 and P2Y1,2,4,6,12,14 receptors was confirmed in undifferentiated and neural-differentiated neurospheres, with an up-regulation of P2X2 and P2X6 subtypes, together with a down-regulation of P2X4, P2X7 and P2Y subtypes upon induction to differentiation. BrdU-labeling and subsequent flow cytometry analysis was used to measure cell proliferation, which was increased by chronic exposure to NGF and increasing concentrations of ATP, in line with the expression levels of PCNA. Furthermore, a synergistic effect on proliferation was observed in conditions of co-incubation with ATP and NGF. While ATP and NGF independently promoted neural migration, no inter-relation between these factors was detected for this cellular process. As conclusion, an unknown synergism of ATP and NGF in proliferation is described. Future efforts may elucidate the underlying mechanisms of the interrelationship of ATP and NGF during neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burnstock G, Ulrich H (2011) Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 68:1369–1394. doi:10.1007/s00018-010-0614-1

    Article  CAS  PubMed  Google Scholar 

  2. Neary JT, Rathbone MP, Cattabeni F, Abbracchio MP, Burnstock G (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18

    Article  CAS  PubMed  Google Scholar 

  3. Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di Iorio P, Caciagli F (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59(6):663–690

    Article  CAS  PubMed  Google Scholar 

  4. Suyama S, Sunabori T, Kanki H, Sawamoto K, Gachet C, Koizumi S, Okano H (2012) Purinergic signaling promotes proliferation of adult mouse subventricular zone cells. J Neurosci 32:9238–9247. doi:10.1523/JNEUROSCI.4001-11.2012

    Article  CAS  PubMed  Google Scholar 

  5. Mishra SK, Braun N, Shukla V, Fullgrabe M, Schomerus C, Korf HW, Gachet C, Ikehara Y, Sevigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133:675–684. doi:10.1242/dev.02233

    Article  CAS  PubMed  Google Scholar 

  6. Jia C, Cussen AR, Hegg CC (2011) ATP differentially upregulates fibroblast growth factor 2 and transforming growth factor alpha in neonatal and adult mice: effect on neuroproliferation. Neuroscience 177:335–346. doi:10.1016/j.neuroscience.2010.12.039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Choi KC, Yoo DS, Cho KS, Huh PW, Kim DS, Park CK (2008) Effect of single growth factor and growth factor combinations on differentiation of neural stem cells. J Korean Neurosurg Soc 44:375–381. doi:10.3340/jkns.2008.44.6.375

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lachyankar MB, Condon PJ, Quesenberry PJ, Litofsky NS, Recht LD, Ross AH (1997) Embryonic precursor cells that express Trk receptors: induction of different cell fates by NGF, BDNF, NT-3, and CNTF. Exp Neurol 144:350–360

    Article  CAS  PubMed  Google Scholar 

  9. Levenberg S, Burdick JA, Kraehenbuehl T, Langer R (2005) Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng 11:506–512. doi:10.1089/ten.2005.11.506

    Article  CAS  PubMed  Google Scholar 

  10. Lin M, Yang L, Fu R, Zhao H (2008) Cloning of the eukaryotic expression vector with nerve growth factor in rats and its effects on proliferation and differentiation of mesencephal neural stem cells of fetal rats. J Huazhong Univ Sci Technol Med Sci 28:513–516. doi:10.1007/s11596-008-0505-y

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Jiang H, Hu Z (2011) Concentration-dependent effect of nerve growth factor on cell fate determination of neural progenitors. Stem Cells Dev 20:1723–1731. doi:10.1089/scd.2010.0370

    Article  CAS  PubMed  Google Scholar 

  12. Behrsing HP, Vulliet PR (2004) Mitogen-activated protein kinase mediates purinergic-enhanced nerve growth factor-induced neurite outgrowth in PC12 cells. J Neurosci Res 78:64–74. doi:10.1002/jnr.20236

    Article  CAS  PubMed  Google Scholar 

  13. Pooler AM, Guez DH, Benedictus R, Wurtman RJ (2005) Uridine enhances neurite outgrowth in nerve growth factor-differentiated PC12 [corrected]. Neuroscience 134:207–214. doi:10.1016/j.neuroscience.2005.03.050

    Article  CAS  PubMed  Google Scholar 

  14. D’Ambrosi N, Murra B, Cavaliere F, Amadio S, Bernardi G, Burnstock G, Volonte C (2001) Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience 108:527–534

    Article  PubMed  Google Scholar 

  15. D’Ambrosi N, Murra B, Vacca F, Volonte C (2004) Pathways of survival induced by NGF and extracellular ATP after growth factor deprivation. Prog Brain Res 146:93–100. doi:10.1016/S0079-6123(03)46006-8

    Article  PubMed  Google Scholar 

  16. Berrios VO, Boukli NM, Rodriguez JW, Negraes PD, Schwindt TT, Trujillo CA, Oliveira SL, Cubano LA, Ferchmin PA, Eterovic VA, Ulrich H, Martins AH (2015) Paraoxon and pyridostigmine interfere with neural stem cell differentiation. Neurochem Res. doi:10.1007/s11064-015-1548-7

    PubMed  Google Scholar 

  17. Trujillo CA, Negraes PD, Schwindt TT, Lameu C, Carromeu C, Muotri AR, Pesquero JB, Cerqueira DM, Pillat MM, de Souza HD, Turaca LT, Abreu JG, Ulrich H (2012) Kinin-B2 receptor activity determines the differentiation fate of neural stem cells. J Biol Chem 287:44046–44061. doi:10.1074/jbc.M112.407197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Martins AH, Alves JM, Trujillo CA, Schwindt TT, Barnabe GF, Motta FL, Guimaraes AO, Casarini DE, Mello LE, Pesquero JB, Ulrich H (2008) Kinin-B2 receptor expression and activity during differentiation of embryonic rat neurospheres. Cytometry Part A 73:361–368. doi:10.1002/cyto.a.20519

    Article  Google Scholar 

  19. Trujillo CA, Schwindt TT, Martins AH, Alves JM, Mello LE, Ulrich H (2009) Novel perspectives of neural stem cell differentiation: from neurotransmitters to therapeutics. Cytometry Part A 75:38–53. doi:10.1002/cyto.a.20666

    Article  Google Scholar 

  20. Schwindt TT, Trujillo CA, Negraes PD, Lameu C, Ulrich H (2011) Directed differentiation of neural progenitors into neurons is accompanied by altered expression of P2X purinergic receptors. J Mol Neurosci 44:141–146. doi:10.1007/s12031-010-9417-y

    Article  CAS  PubMed  Google Scholar 

  21. Shih CH, Lacagnina M, Leuer-Bisciotti K, Proschel C (2014) Astroglial-derived periostin promotes axonal regeneration after spinal cord injury. J Neurosci 34:2438–2443. doi:10.1523/JNEUROSCI.2947-13.2014

    Article  CAS  PubMed  Google Scholar 

  22. Schulte JD, Srikanth M, Das S, Zhang J, Lathia JD, Yin L, Rich JN, Olson EC, Kessler JA, Chenn A (2013) Cadherin-11 regulates motility in normal cortical neural precursors and glioblastoma. PLoS One 8(8):e70962. doi:10.1371/journal.pone.0070962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Milosevic J, Brandt A, Roemuss U, Arnold A, Wegner F, Schwarz SC, Storch A, Zimmermann H, Schwarz J (2006) Uracil nucleotides stimulate human neural precursor cell proliferation and dopaminergic differentiation: involvement of MEK/ERK signalling. J Neurochem 99:913–923. doi:10.1111/j.1471-4159.2006.04132.x

    Article  CAS  PubMed  Google Scholar 

  24. Messemer N, Kunert C, Grohmann M, Sobottka H, Nieber K, Zimmermann H, Franke H, Norenberg W, Straub I, Schaefer M, Riedel T, Illes P, Rubini P (2013) P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone. Neuropharmacol 73:122–137. doi:10.1016/j.neuropharm.2013.05.017

    Article  CAS  Google Scholar 

  25. Glaser T, de Oliveira SL, Cheffer A, Beco R, Martins P, Fornazari M, Lameu C, Junior HM, Coutinho-Silva R, Ulrich H (2014) Modulation of mouse embryonic stem cell proliferation and neural differentiation by the P2X7 receptor. PLoS One 9(5):e96281. doi:10.1371/journal.pone.0096281

    Article  PubMed Central  PubMed  Google Scholar 

  26. Young A, Machacek DW, Dhara SK, Macleish PR, Benveniste M, Dodla MC, Sturkie CD, Stice SL (2011) Ion channels and ionotropic receptors in human embryonic stem cell derived neural progenitors. Neuroscience 192:793–805. doi:10.1016/j.neuroscience.2011.04.039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Resende RR, Britto LR, Ulrich H (2008) Pharmacological properties of purinergic receptors and their effects on proliferation and induction of neuronal differentiation of P19 embryonal carcinoma cells. Int J Dev Neurosci 26:763–777. doi:10.1016/j.ijdevneu.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  28. Yuahasi KK, Demasi MA, Tamajusuku AS, Lenz G, Sogayar MC, Fornazari M, Lameu C, Nascimento IC, Glaser T, Schwindt TT, Negraes PD, Ulrich H (2012) Regulation of neurogenesis and gliogenesis of retinoic acid-induced P19 embryonal carcinoma cells by P2X2 and P2X7 receptors studied by RNA interference. Int J Dev Neurosci 30:91–97. doi:10.1016/j.ijdevneu.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  29. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonte C, Aloisi F, Visentin S (2005) Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50:132–144. doi:10.1002/glia.20160

    Article  CAS  PubMed  Google Scholar 

  30. Coppi E, Maraula G, Fumagalli M, Failli P, Cellai L, Bonfanti E, Mazzoni L, Coppini R, Abbracchio MP, Pedata F, Pugliese AM (2013) UDP-glucose enhances outward K(+) currents necessary for cell differentiation and stimulates cell migration by activating the GPR17 receptor in oligodendrocyte precursors. Glia 61:1155–1171. doi:10.1002/glia.22506

    Article  PubMed  Google Scholar 

  31. Murphy N, Lynch MA (2012) Activation of the P2X(7) receptor induces migration of glial cells by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1. J Neurochem 123:761–770. doi:10.1111/jnc.12031

    Article  CAS  PubMed  Google Scholar 

  32. Othman T, Yan H, Rivkees SA (2003) Oligodendrocytes express functional A1 adenosine receptors that stimulate cellular migration. Glia 44:166–172. doi:10.1002/glia.10281

    Article  PubMed  Google Scholar 

  33. Wang M, Kong Q, Gonzalez FA, Sun G, Erb L, Seye C, Weisman GA (2005) P2Y nucleotide receptor interaction with alpha integrin mediates astrocyte migration. J Neurochem 95:630–640. doi:10.1111/j.1471-4159.2005.03408.x

    Article  CAS  PubMed  Google Scholar 

  34. Scemes E, Duval N, Meda P (2003) Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci 23:11444–11452

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Heine C, Sygnecka K, Scherf N, Grohmann M, Bräsigk A (2015) Franke H (2015) P2Y(1) receptor mediated neuronal fibre outgrowth in organotypic brain slice co-cultures. Neuropharmacology 93:252–266. doi:10.1016/j.neuropharm.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  36. Sygnecka K, Heine C, Scherf N, Fasold M, Binder H, Scheller C, Franke H (2015) Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures. Int J Dev Neurosci 40:1–11. doi:10.1016/j.ijdevneu.2014.10.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, awarded to H.U. S.L.B.O.’s master and C.A.T.’s doctoral theses were supported by CNPq and FAPESP, respectively. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Ulrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, S., Trujillo, C.A., Negraes, P.D. et al. Effects of ATP and NGF on Proliferation and Migration of Neural Precursor Cells. Neurochem Res 40, 1849–1857 (2015). https://doi.org/10.1007/s11064-015-1674-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1674-2

Keywords

Navigation