Skip to main content

Advertisement

Log in

Abnormal Glucose Metabolism in Alzheimer’s Disease: Relation to Autophagy/Mitophagy and Therapeutic Approaches

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diminished glucose metabolism accompanies many neurodegenerative diseases including Alzheimer’s disease. An understanding of the relation of these metabolic changes to the disease will enable development of novel therapeutic strategies. Following a metabolic challenge, cells generally conserve energy to preserve viability. This requires activation of many cellular repair/regenerative processes such as mitophagy/autophagy and fusion/fission. These responses may diminish cell function in the long term. Prolonged fission induces mitophagy/autophagy which promotes repair but if prolonged progresses to mitochondrial degradation. Abnormal glucose metabolism alters protein signaling including the release of proteins from the mitochondria or migration of proteins from the cytosol to the mitochondria or nucleus. This overview provides an insight into the different mechanisms of autophagy/mitophagy and mitochondrial dynamics in response to the diminished metabolism that occurs with diseases, especially neurodegenerative diseases such as Alzheimer’s disease. The review discusses multiple aspects of mitochondrial responses including different signaling proteins and pathways of mitophagy and mitochondrial biogenesis. Improving cellular bioenergetics and mitochondrial dynamics will alter protein signaling and improve cellular/mitochondrial repair and regeneration. An understanding of these changes will suggest new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Santos SS, Gibson GE, Cooper AJL, Denton TT, Thompson CM, Bunik VI, Alves PM, Sonnewald U (2006) Inhibitors of the α-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons. J Neurosci Res 83:450–458

    Article  CAS  PubMed  Google Scholar 

  2. Shi Q, Risa Ø, Sonnewald U, Gibson GE (2009) Mild reduction in the activity of the α-ketoglutarate dehydrogenase complex elevates GABA shunt and glycolysis. J Neurochem 109:214–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Nilsen LH, Shi Q, Gibson GE, Sonnewald U (2011) Brain [U-13C]glucose metabolism in mice with decreased α-ketoglutarate dehydrogenase complex activity. J Neurosci Res 89:1997–2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Klivenyi P, Starkov AA, Calingasan NY, Gardian G, Browne SE, Yang L, Bubber P, Gibson GE, Patel MS, Beal MF (2004) Mice deficient in dihydrolipoamide dehydrogenase show increased vulnerability to MPTP, malonate and 3-nitropropionic acid neurotoxicity. J Neurochem 88:1352–1360

    Article  CAS  PubMed  Google Scholar 

  5. Gibson GE, Chen H-L, Xu H, Qiu L, Xu Z, Denton TT, Shi Q (2012) Deficits in the mitochondrial enzyme α-ketoglutarate dehydrogenase lead to Alzheimer’s disease-like calcium dysregulation. Neurobiol Aging 33:1121.e1113–1121.e1124

    Article  CAS  Google Scholar 

  6. Furst AJ, Rabinovici GD, Rostomian AH, Steed T, Alkalay A, Racine C, Miller BL, Jagust WJ (2012) Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol Aging 33:215–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Tarawneh R, Holtzman DM (2010) Biomarkers in translational research of Alzheimer’s disease. Neuropharmacology 59:310–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, Mach RH, Morris JC, Raichle ME, Mintun MA (2010) Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition. Proc Natl Acad Sci 107:17763–17767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57:695–703

    Article  CAS  PubMed  Google Scholar 

  10. Calingasan NY, Ho DJ, Wille EJ, Campagna MV, Ruan J, Dumont M, Yang L, Shi Q, Gibson GE, Beal MF (2008) Influence of mitochondrial enzyme deficiency on adult neurogenesis in mouse models of neurodegenerative diseases. Neuroscience 153:986–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Karuppagounder SS, Xu H, Shi Q, Chen LH, Pedrini S, Pechman D, Baker H, Beal MF, Gandy SE, Gibson GE (2009) Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model. Neurobiol Aging 30:1587–1600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fu W, Shi D, Westaway D, Jhamandas JH (2015) Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. J Biol Chem 290(20):12504–12513

    Article  CAS  PubMed  Google Scholar 

  13. Li Q, Zhang T, Wang J, Zhang Z, Zhai Y, Yang GY, Sun X (2014) Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun 444:182–188

    Article  CAS  PubMed  Google Scholar 

  14. Pyo J-O, Nah J, Jung Y-K (2012) Molecules and their functions in autophagy. Exp Mol Med 44:73–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Esclatine A, Chaumorcel M, Codogno P (2009) Macroautophagy signaling and regulation. Curr Top Microbiol Immunol 335:33–70

    CAS  PubMed  Google Scholar 

  16. Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Qi L, Zhang X-D, Wu J-C, Lin F, Wang J, DiFiglia M, Qin Z-H (2012) The role of chaperone-mediated autophagy in huntingtin degradation. PLoS ONE 7:e46834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Twig G, Shirihai O (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14:1939–1951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A, Ruonala MO, Priault M, Salin B, Reichert AS (2012) Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta Mol Cell Res 1823:2297–2310

    Article  CAS  Google Scholar 

  21. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  CAS  PubMed  Google Scholar 

  22. Barbour JA, Turner N (2014) Mitochondrial stress signaling promotes cellular adaptations. Int J Cell Biol 2014:12

    Article  CAS  Google Scholar 

  23. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    Article  CAS  PubMed  Google Scholar 

  24. Berman SB, Pineda FJ, Hardwick JM (2008) Mitochondrial fission and fusion dynamics: the long and short of it. Cell Death Differ 15:1147–1152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lee Y, Lee H-Y, Hanna RA, Gustafsson ÅB (2011) Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circul Physiol 301(5):H1924–H1931

    Article  CAS  Google Scholar 

  26. Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C, Zhou J, Chen Q (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286:11649–11658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA, Chen W, Hoke A, Dawson VL, Dawson TM, Gabrielson K, Kass DA, Iijima M, Sesaki H (2014) Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 33:2798–2813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Estaquier J, Arnoult D (2007) Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  29. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Y-i Goto, Taguchi N, Morinaga H, Maeda M, Takayanagi R, Yokota S, Mihara K (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    Article  CAS  PubMed  Google Scholar 

  30. Babbar M, Sheikh MS (2013) Metabolic stress and disorders related to alterations in mitochondrial fission or fusion. Mol Cell Pharmacol 5:109–133

    PubMed Central  PubMed  Google Scholar 

  31. Benard G, Karbowski M (2009) Mitochondrial fusion and division: regulation and role in cell viability. Semin Cell Dev Biol 20:365–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta Bioenerg 1777:1092–1097

    Article  CAS  Google Scholar 

  33. Langer T, Kaser M, Klanner C, Leonhard K (2001) AAA proteases of mitochondria: quality control of membrane proteins and regulatory functions during mitochondrial biogenesis. Biochem Soc Trans 29:431–436

    Article  CAS  PubMed  Google Scholar 

  34. Hoekstra J, Montine K, Zhang J, Montine T (2011) Mitochondrial therapeutics in Alzheimer’s disease and Parkinson’s disease. Alzheimers Res Ther 3:21

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, Martinou JC, Westermann B, Rugarli EI, Langer T (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Gomes LC, Scorrano L (2013) Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta Mol Cell Res 1833:205–212

    Article  CAS  Google Scholar 

  37. Scarffe LA, Stevens DA, Dawson VL, Dawson TM (2014) Parkin and PINK1: much more than mitophagy. Trends Neurosci 37:315–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RLJ, Hess S, Chan DC (2011) Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20:1726–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Shin J-H, Ko Han S, Kang H, Lee Y, Lee Y-I, Pletinkova O, Troconso Juan C, Dawson Valina L, Dawson Ted M (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144:689–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Banerjee K, Munshi S, Sen O, Pramanik V, Roy Mukherjee T, Chakrabarti S (2014) Dopamine cytotoxicity involves both oxidative and nonoxidative pathways in SH-SY5Y cells: potential role of alpha-synuclein overexpression and proteasomal inhibition in the Etiopathogenesis of Parkinson’s disease. Parkinson’s Dis 2014:12

    Google Scholar 

  41. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RLA, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrané J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci 107:378–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhang J, Ney PA (2009) Role of Bnip3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16:939–946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D, Qiang Wang KZ, Zhu J, Klein-Seetharam J, Balasubramanian K, Amoscato AA, Borisenko G, Huang Z, Gusdon AM, Cheikhi A, Steer EK, Wang R, Baty C, Watkins S, Bahar I, Bayir H, Kagan VE (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15:1197–1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Büki A, Okonkwo DO, Wang KKW, Povlishock JT (2000) Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci 20:2825–2834

    PubMed  Google Scholar 

  45. Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166

    Article  CAS  PubMed  Google Scholar 

  46. Cui T, Fan C, Gu L, Gao H, Liu Q, Zhang T, Qi Z, Zhao C, Zhao H, Cai Q, Yang H (2011) Silencing of PINK1 induces mitophagy via mitochondrial permeability transition in dopaminergic MN9D cells. Brain Res 1394:1–13

    Article  CAS  PubMed  Google Scholar 

  47. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, Amano A, Yoshimori T (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–393

    Article  CAS  PubMed  Google Scholar 

  48. Schon EA, Area-Gomez E (2013) Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 55:26–36

    Article  CAS  PubMed  Google Scholar 

  49. Ghibelli L, Coppola S, Fanelli C, Rotilio G, Civitareale P, Scovassi AI, Ciriolo MR (1999) Glutathione depletion causes cytochrome c release even in the absence of cell commitment to apoptosis. FASEB J 13:2031–2036

    CAS  PubMed  Google Scholar 

  50. Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta Bioenerg 1757:639–647

    Article  CAS  Google Scholar 

  51. Borutaite V, Jekabsone A, Morkuniene R, Brown GC (2003) Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. J Mol Cell Cardiol 35:357–366

    Article  CAS  PubMed  Google Scholar 

  52. Aquilano K, Vigilanza P, Baldelli S, Pagliei B, Rotilio G, Ciriolo MR (2010) Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem 285:21590–21599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria: a potential role in apoptotic signaling. J Biol Chem 275:16202–16212

    Article  CAS  PubMed  Google Scholar 

  54. Amuthan G, Biswas G, Zhang S-Y, Klein-Szanto A, Vijayasarathy C, Avadhani NG (2001) Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J 20:1910–1920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Biswas G, Guha M, Avadhani NG (2005) Mitochondria-to-nucleus stress signaling in mammalian cells: nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene 354:132–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Chakrabarti S, Munshi S, Banerjee K, Thakurta IG, Sinha M, Bagh MB (2011) Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis 2:242–256

    PubMed Central  PubMed  Google Scholar 

  57. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  58. Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25:259–264

    Article  CAS  PubMed  Google Scholar 

  59. Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N, Flaim E, Michelakis ED (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158:84–97

    Article  CAS  PubMed  Google Scholar 

  60. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Tait SW, Green DR (2012) Mitochondria and cell signalling. J Cell Sci 125:807–815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis*. Annu Rev Genet 43:95–118

    Article  CAS  PubMed  Google Scholar 

  63. Huang H-M, Ou H-C, Xu H, Chen H-L, Fowler C, Gibson GE (2003) Inhibition of α-ketoglutarate dehydrogenase complex promotes cytochrome c release from mitochondria, caspase-3 activation, and necrotic cell death. J Neurosci Res 74:309–317

    Article  CAS  PubMed  Google Scholar 

  64. Banerjee K, Sinha M, Pham Cle L, Jana S, Chanda D, Cappai R, Chakrabarti S (2010) Alpha-synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: implications in Parkinson’s disease. FEBS Lett 584:1571–1576

    Article  CAS  PubMed  Google Scholar 

  65. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  66. Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18:R169–R176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Leclere L, Fransolet M, Cote F, Cambier P, Arnould T, Van Cutsem P, Michiels C (2015) Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS ONE 10:e0115831

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Yan CH, Li Y, Tian XX, Zhu N, Song HX, Zhang J, Sun MY, Han YL (2015) CREG1 ameliorates myocardial fibrosis associated with autophagy activation and Rab7 expression. Biochim Biophys Acta 1852:353–364

    Article  CAS  PubMed  Google Scholar 

  69. Meijer AJ, Codogno P (2009) Autophagy: regulation and role in disease. Crit Rev Clin Lab Sci 46:210–240

    Article  CAS  PubMed  Google Scholar 

  70. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Niu YN, Liu QQ, Zhang SP, Yuan N, Cao Y, Cai JY, Lin WW, Xu F, Wang ZJ, Chen B, Wang JR (2014) Alternative messenger RNA splicing of autophagic gene Beclin 1 in human B-cell acute lymphoblastic leukemia cells. APJCP 15:2153–2158

    PubMed  Google Scholar 

  72. Kaushal GP (2012) Autophagy protects proximal tubular cells from injury and apoptosis. Kidney Int 82:1250–1253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Zhang XD, Wang Y, Wang Y, Zhang X, Han R, Wu JC, Liang ZQ, Gu ZL, Han F, Fukunaga K, Qin ZH (2009) p53 mediates mitochondria dysfunction-triggered autophagy activation and cell death in rat striatum. Autophagy 5:339–350

    Article  CAS  PubMed  Google Scholar 

  74. Smirnova E, Griparic L, Shurland D-L, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Martin OJ, Lai L, Soundarapandian MM, Leone TC, Zorzano A, Keller MP, Attie AD, Muoio DM, Kelly DP (2014) A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114:626–636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  CAS  PubMed  Google Scholar 

  77. Liang H, Ward WF (2006) PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  78. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  79. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  CAS  Google Scholar 

  80. Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120:419–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Sheng B, Wang X, Su B, H-g Lee, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120:419–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-nitrosylation of Drp1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, Morrow E, Ryan JJ, Archer SL (2014) Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J 28:316–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Manczak M, Reddy PH (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet 21:2538–2547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, Mao P, Reddy PH (2012) Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet 21:406–420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Caza TN, Fernandez DR, Talaber G, Oaks Z, Haas M, Madaio MP, Lai Z-W, Miklossy G, Singh RR, Chudakov DM, Malorni W, Middleton F, Banki K, Perl A (2014) HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann Rheum Dis 73:1888–1897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Thomas KJ, Jacobson MR (2012) Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model. PLoS ONE 7:e45319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Clerc P, Ge SX, Hwang H, Waddell J, Roelofs BA, Karbowski M, Sesaki H, Polster BM (2014) Drp1 is dispensable for apoptotic cytochrome c release in primed MCF10A and fibroblast cells but affects Bcl-2 antagonist-induced respiratory changes. Br J Pharmacol 171:1988–1999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Galluzzi L, Larochette N, Zamzami N, Kroemer G (2006) Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25:4812–4830

    Article  CAS  PubMed  Google Scholar 

  91. Sorriento D, Pascale AV, Finelli R, Carillo AL, Annunziata R, Trimarco B, Iaccarino G (2014) Targeting mitochondria as therapeutic strategy for metabolic disorders. Sci World J 2014:9

    Article  Google Scholar 

  92. Pan X, Gong N, Zhao J, Yu Z, Gu F, Chen J, Sun X, Zhao L, Yu M, Xu Z, Dong W, Qin Y, Fei G, Zhong C, Xu TL (2010) Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 133:1342–1351

    Article  PubMed  Google Scholar 

  93. Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol 5:297–348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Moreira P, Zhu X, Wang X, Lee H-G, Nunomura A, Petersen RB, Perry G, Smith MA (2010) Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta Mol Basis Dis 1802:212–220

    Article  CAS  Google Scholar 

  95. Szeto HH, James LP, Atkinson AJ (2014) Mitochondrial pharmacology: its future is now. Clin Pharmacol Ther 96:629–633

    Article  CAS  PubMed  Google Scholar 

  96. Beal MF (2009) Therapeutic approaches to mitochondrial dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 15:S189–S194

    Article  PubMed  Google Scholar 

  97. Chaturvedi RK, Beal MF (2013) Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol Cell Neurosci 55:101–114

    Article  CAS  PubMed  Google Scholar 

  98. Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342:619–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Fernandes-Santos C, Carneiro RE, de SouzaMendonca L, Aguila MB, Mandarim-de-Lacerda CA (2009) Pan-PPAR agonist beneficial effects in overweight mice fed a high-fat high-sucrose diet. Nutrition 25:818–827

    Article  CAS  PubMed  Google Scholar 

  100. Meira Martins L, Vieira M, Ilha M, de Vasconcelos M, Biehl H, Lima D, Schein V, Barbé-Tuana F, Borojevic R, Guma F (2015) The interplay between apoptosis, mitophagy and mitochondrial biogenesis induced by resveratrol can determine activated hepatic stellate cells death or survival. Cell Biochem Biophys 71:657–672

    Article  CAS  PubMed  Google Scholar 

  101. Karuppagounder SS, Pinto JT, Xu H, Chen LH, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s Disease. Neurochem Int 54:111–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany, NY) 5:144–150

    CAS  Google Scholar 

  103. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50:919–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Peyton KJ, Liu XM, Yu Y, Yates B, Durante W (2012) Activation of AMP-activated protein kinase inhibits the proliferation of human endothelial cells. J Pharmacol Exp Ther 342:827–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Wang YY, Yang YX, Zhe H, He ZX, Zhou SF (2014) Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Des Dev Ther 8:2075–2088

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Institutes of Health (NIH) Grant AG14930 and the Burke Medical Research Institute. Dr. Dienel has made immense contributions to neurochemistry and has had a large impact on how I (we) view the brain’s use of glucose. His intellectual contribution to our understanding of how different cell types in the brain interact has changed the field and my own research. I am very grateful for many contributions and his friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary E. Gibson.

Additional information

Special Issue: In honor of Dr. Gerald Dienel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, K., Munshi, S., Frank, D.E. et al. Abnormal Glucose Metabolism in Alzheimer’s Disease: Relation to Autophagy/Mitophagy and Therapeutic Approaches. Neurochem Res 40, 2557–2569 (2015). https://doi.org/10.1007/s11064-015-1631-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1631-0

Keywords

Navigation