Skip to main content
Log in

Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague–Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P < 0.01) and [glutamate]/[glutamine] ratio (P < 0.05). Lower taurine concentrations were observed in the hippocampus (P < 0.01) and striatum (P < 0.05). IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lin CH, Gelardi NL, Cha CJ, Oh W (1998) Cerebral metabolic response to hypoglycemia in severe intrauterine growth-retarded rat pups. Early Hum Dev 52:1–11

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg A (2008) The IUGR newborn. Semin Perinatol 32:219–224

    Article  PubMed  Google Scholar 

  3. Padilla N et al (2014) Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age. Brain Res 1545:1–11

    Article  CAS  PubMed  Google Scholar 

  4. Baschat AA (2011) Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol 37:501–514

    Article  CAS  PubMed  Google Scholar 

  5. Leitner Y et al (2007) Neurodevelopmental outcome of children with intrauterine growth retardation: a longitudinal, 10-year prospective study. J Child Neurol 22:580–587

    Article  PubMed  Google Scholar 

  6. Georgieff MK (1998) Intrauterine growth retardation and subsequent somatic growth and neurodevelopment. J Pediatr 133:3–5

    Article  CAS  PubMed  Google Scholar 

  7. de Deungria M et al (2000) Perinatal iron deficiency decreases cytochrome c oxidase (CytOx) activity in selected regions of neonatal rat brain. Pediatr Res 48:169–176

    Article  CAS  PubMed  Google Scholar 

  8. Reid MV et al (2012) Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4. J Neuropathol Exp Neurol 71:640–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schober ME et al (2009) Intrauterine growth restriction due to uteroplacental insufficiency decreased white matter and altered NMDAR subunit composition in juvenile rat hippocampi. Am J Physiol Regul Integr Comp Physiol 296:R681–R692

    Article  CAS  PubMed  Google Scholar 

  10. Somm E et al (2012) Early metabolic defects in dexamethasone-exposed and undernourished intrauterine growth restricted rats. PLoS One 7:e50131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leth H et al (1995) Brain lactate in preterm and growth-retarded neonates. Acta Paediatr 84:495–499

    Article  CAS  PubMed  Google Scholar 

  12. Tkac I, Rao R, Georgieff MK, Gruetter R (2003) Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn Reson Med 50:24–32

    Article  CAS  PubMed  Google Scholar 

  13. Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK (2003) Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr 133:3215–3221

    CAS  PubMed  Google Scholar 

  14. Simmons RA, Gounis AS, Bangalore SA, Ogata ES (1992) Intrauterine growth retardation: fetal glucose transport is diminished in lung but spared in brain. Pediatr Res 31:59–63

    Article  CAS  PubMed  Google Scholar 

  15. Maliszewski-Hall AM, Stein AB, Alexander M, Ennis K, Rao R (2015) Acute hypoglycemia results in reduced cortical neuronal injury in the developing IUGR rat. Pediatr Res. doi:10.1038/pr.2015.68

  16. Romijn HJ, Hofman MA, Gramsbergen A (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 26:61–67

    Article  CAS  PubMed  Google Scholar 

  17. Ogata ES, Bussey ME, LaBarbera A, Finley S (1985) Altered growth, hypoglycemia, hypoalaninemia, and ketonemia in the young rat: postnatal consequences of intrauterine growth retardation. Pediatr Res 19:32–37

    Article  CAS  PubMed  Google Scholar 

  18. Gruetter R, Tkac I (2000) Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 43:319–323

    Article  CAS  PubMed  Google Scholar 

  19. Garwood M, DelaBarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177

    Article  CAS  PubMed  Google Scholar 

  20. Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656

    Article  CAS  PubMed  Google Scholar 

  21. Oz G et al (2010) Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 30:3831–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfeuffer J, Tkac I, Provencher SW, Gruetter R (1999) Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J Magn Reson 141:104–120

    Article  CAS  PubMed  Google Scholar 

  23. Henry PG et al (2006) Proton-observed carbon-edited NMR spectroscopy in strongly coupled second-order spin systems. Magn Reson Med 55:250–257

    Article  CAS  PubMed  Google Scholar 

  24. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  CAS  PubMed  Google Scholar 

  25. Tkac I (2008) In: Proceedings of the 16th scientific meeting of the international society for magnetic resonance in medicine, p 1624 (Mira Digital)

  26. Raman L et al (2005) In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus. Brain Res Dev Brain Res 156:202–209

    Article  CAS  PubMed  Google Scholar 

  27. Terpstra M, Rao R, Tkac I (2010) Region-specific changes in ascorbate concentration during rat brain development quantified by in vivo (1)H NMR spectroscopy. NMR Biomed 23:1038–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barth A et al (1998) Influence of hypoxia and hypoxia/hypercapnia upon brain and blood peroxidative and glutathione status in normal weight and growth-restricted newborn piglets. Exp Toxicol Pathol 50:402–410

    Article  CAS  PubMed  Google Scholar 

  29. Gibson DD et al (1993) Evidence that the large loss of glutathione observed in ischemia/reperfusion of the small intestine is not due to oxidation to glutathione disulfide. Free Radic Biol Med 14:427–433

    Article  CAS  PubMed  Google Scholar 

  30. Adams JD Jr, Lauterburg BH, Mitchell JR (1983) Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J Pharmacol Exp Ther 227:749–754

    CAS  PubMed  Google Scholar 

  31. Sastre J et al (1992) Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol 263:R992–R995

    CAS  PubMed  Google Scholar 

  32. Rao AR, Quach H, Smith E, Vatassery GT, Rao R (2014) Changes in ascorbate, glutathione and alpha-tocopherol concentrations in the brain regions during normal development and moderate hypoglycemia in rats. Neurosci Lett 568:67–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barth A, Bauer R, Klinger W, Zwiener U (1994) Peroxidative status and glutathione content of the brain in normal weight and intra-uterine growth-retarded newborn piglets. Exp Toxicol Pathol 45:519–524

    Article  CAS  PubMed  Google Scholar 

  34. Raps SP, Lai JC, Hertz L, Cooper AJ (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res 493:398–401

    Article  CAS  PubMed  Google Scholar 

  35. Selak MA, Storey BT, Peterside I, Simmons RA (2003) Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded rats. Am J Physiol Endocrinol Metab 285:E130–E137

    Article  CAS  PubMed  Google Scholar 

  36. Simmons RA, Suponitsky-Kroyter I, Selak MA (2005) Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell failure. J Biol Chem 280:28785–28791

    Article  CAS  PubMed  Google Scholar 

  37. Peterside IE, Selak MA, Simmons RA (2003) Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am J Physiol Endocrinol Metab 285:E1258–E1266

    Article  CAS  PubMed  Google Scholar 

  38. Eide MG et al (2013) Degree of fetal growth restriction associated with schizophrenia risk in a national cohort. Psychol Med 43:2057–2066

    Article  CAS  PubMed  Google Scholar 

  39. Nielsen PR et al (2013) Fetal growth and schizophrenia: a nested case-control and case-sibling study. Schizophr Bull 39:1337–1342

    Article  PubMed  Google Scholar 

  40. Nosarti C et al (2012) Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry 69:E1–E8

    Article  PubMed  Google Scholar 

  41. Tomi M, Zhao Y, Thamotharan S, Shin BC, Devaskar SU (2013) Early life nutrient restriction impairs blood-brain metabolic profile and neurobehavior predisposing to Alzheimer’s disease with aging. Brain Res 1495:61–75

    Article  CAS  PubMed  Google Scholar 

  42. Bittsansky M, Vybohova D, Dobrota D (2012) Proton magnetic resonance spectroscopy and its diagnostically important metabolites in the brain. Gen Physiol Biophys 31:101–112

    Article  CAS  PubMed  Google Scholar 

  43. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brown LD, Green AS, Limesand SW, Rozance PJ (2011) Maternal amino acid supplementation for intrauterine growth restriction. Front Biosci (Schol Ed) 3:428–444

    Google Scholar 

  45. Boujendar S, Arany E, Hill D, Remacle C, Reusens B (2003) Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. J Nutr 133:2820–2825

    CAS  PubMed  Google Scholar 

  46. Hultman K et al (2007) Maternal taurine supplementation in the late pregnant rat stimulates postnatal growth and induces obesity and insulin resistance in adult offspring. J Physiol 579:823–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li F et al (2014) Antenatal taurine supplementation increases taurine content in intrauterine growth restricted fetal rat brain tissue. Metab Brain Dis 29:867–871

    Article  CAS  PubMed  Google Scholar 

  48. van Gelder NM (1989) Brain taurine content as a function of cerebral metabolic rate: osmotic regulation of glucose derived water production. Neurochem Res 14:495–497

    Article  PubMed  Google Scholar 

  49. Pasantes-Morales H, Franco R, Ochoa L, Ordaz B (2002) Osmosensitive release of neurotransmitter amino acids: relevance and mechanisms. Neurochem Res 27:59–65

    Article  CAS  PubMed  Google Scholar 

  50. Silverstein FS, Simpson J, Gordon KE (1990) Hypoglycemia alters striatal amino acid efflux in perinatal rats: an in vivo microdialysis study. Ann Neurol 28:516–521

    Article  CAS  PubMed  Google Scholar 

  51. Gisselsson L, Smith ML, Siesjo BK (1998) Influence of hypoglycemic coma on brain water and osmolality. Exp Brain Res 120:461–469

    Article  CAS  PubMed  Google Scholar 

  52. Nehlig A, de Vasconcelos AP, Boyet S (1988) Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during postnatal development. J Neurosci 8:2321–2333

    CAS  PubMed  Google Scholar 

  53. Callahan LS, Thibert KA, Wobken JD, Georgieff MK (2013) Early-life iron deficiency anemia alters the development and long-term expression of parvalbumin and perineuronal nets in the rat hippocampus. Dev Neurosci 35:427–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nehlig A, Pereira de Vasconcelos A (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 40:163–221

    Article  CAS  PubMed  Google Scholar 

  55. Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989

    CAS  PubMed  Google Scholar 

  56. Ke X et al (2014) IUGR disrupts the PPARgamma-Setd8-H4K20me(1) and Wnt signaling pathways in the juvenile rat hippocampus. Int J Dev Neurosci 38:59–67

    Article  CAS  PubMed  Google Scholar 

  57. Egana-Ugrinovic G, Sanz-Cortes M, Figueras F, Couve-Perez C, Gratacos E (2014) Fetal MRI insular cortical morphometry and its association with neurobehavior in late-onset small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 44:322–329

    Article  CAS  PubMed  Google Scholar 

  58. Benavides-Serralde A et al (2009) Three-dimensional sonographic calculation of the volume of intracranial structures in growth-restricted and appropriate-for-gestational age fetuses. Ultrasound Obstet Gynecol 33:530–537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dinesh Deelchand, Ph.D. for advice and assistance in spectral processing and quantification, Michael Georgieff, M.D. for critical review of the manuscript and Rebecca Simmons, M.D. for technical and intellectual support. The National Institute of Health (CHRCDA K12 HD068322), Bethesda, Maryland, the Viking Children’s Fund, Department of Pediatrics, University of Minnesota, Minneapolis, MN and the WM KECK Foundation “A Multi-Mode Multi-Channel Transmitter for 9.4 T NMR” supported this project. The Center for Magnetic Resonance Research is supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) Grant P41EB015894, the Institutional Center for Cores for Advanced Neuroimaging Award P30 NS076408 and the WM KECK Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Maliszewski-Hall.

Additional information

Special Issue: In Honor of Dr. Mary McKenna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maliszewski-Hall, A.M., Alexander, M., Tkáč, I. et al. Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain. Neurochem Res 42, 133–140 (2017). https://doi.org/10.1007/s11064-015-1609-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1609-y

Keywords

Navigation