Skip to main content

Advertisement

Log in

Neurotrophic Effects of Mu Bie Zi (Momordica cochinchinensis) Seed Elucidated by High-Throughput Screening of Natural Products for NGF Mimetic Effects in PC-12 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Post-mitotic central nervous system (CNS) neurons have limited capacity for regeneration, creating a challenge in the development of effective therapeutics for spinal cord injury or neurodegenerative diseases. Furthermore, therapeutic use of human neurotrophic agents such as nerve growth factor (NGF) are limited due to hampered transport across the blood brain barrier (BBB) and a large number of peripheral side effects (e.g. neuro-inflammatory pain/tissue degeneration etc.). Therefore, there is a continued need for discovery of small molecule NGF mimetics that can penetrate the BBB and initiate CNS neuronal outgrowth/regeneration. In the current study, we conduct an exploratory high-through-put (HTP) screening of 1144 predominantly natural/herb products (947 natural herbs/plants/spices, 29 polyphenolics and 168 synthetic drugs) for ability to induce neurite outgrowth in PC12 dopaminergic cells grown on rat tail collagen, over 7 days. The data indicate a remarkably rare event-low hit ratio with only 1/1144 tested substances (<111.25 µg/mL) being capable of inducing neurite outgrowth in a dose dependent manner, identified as; Mu Bie Zi, Momordica cochinchinensis seed extract (MCS). To quantify the neurotrophic effects of MCS, 36 images (n = 6) (average of 340 cells per image), were numerically assessed for neurite length, neurite count/cell and min/max neurite length in microns (µm) using Image J software. The data show neurite elongation from 0.07 ± 0.02 µm (controls) to 5.5 ± 0.62 µm (NGF 0.5 μg/mL) and 3.39 ± 0.45 µm (138 μg/mL) in MCS, where the average maximum length per group extended from 3.58 ± 0.42 µm (controls) to 41.93 ± 3.14 µm (NGF) and 40.20 ± 2.72 µm (MCS). Imaging analysis using immunocytochemistry (ICC) confirmed that NGF and MCS had similar influence on 3-D orientation/expression of 160/200 kD neurofilament, tubulin and F-actin. These latent changes were associated with early rise in phosphorylated extracellular signal-regulated kinase (ERK) p-Erk1 (T202/Y204)/p-Erk2 (T185/Y187) at 60 min with mild changes in pAKT peaking at 5 min, and no indication of pMEK involvement. These findings demonstrate a remarkable infrequency of natural products or polyphenolic constituents to exert neurotrophic effects at low concentrations, and elucidate a unique property of MCS extract to do so. Future research will be required to delineate in depth mechanism of action of MCS, constituents responsible and potential for therapeutic application in CNS degenerative disease or injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Levi-Montalcini R, Cohen S (1956) In vitro and in vivo effects of a nerve growth-stimulating agent isolated from snake venom. Proc Natl Acad Sci USA 42:695–699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Esmaeili A, Alifarja S, Nourbakhsh N, Talebi A (2014) Messenger RNA expression patterns of neurotrophins during transdifferentiation of stem cells from human-exfoliated deciduous teeth into neural-like cells. Avicenna J Med Biotechnol 6:21–26

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Bothwell M (2014) NGF, BDNF, NT3, and NT4. Handb Exp Pharmacol 220:3–15

    Article  CAS  PubMed  Google Scholar 

  4. Pezet S (2014) Neurotrophins and pain. Biol Aujourd’hui 208:21–29

    Article  CAS  Google Scholar 

  5. Muralidharan A, Wyse BD, Smith MT (2014) Analgesic efficacy and mode of action of a selective small molecule angiotensin II type 2 receptor antagonist in a rat model of prostate cancer-induced bone pain. Pain Med 15:93–110

    Article  PubMed  Google Scholar 

  6. Kim SW, Im YJ, Choi HC, Kang HJ, Kim JY, Kim JH (2014) Urinary nerve growth factor correlates with the severity of urgency and pain. Int Urogynecol J 25:1561–1567

    Article  PubMed  Google Scholar 

  7. Ono R, Kagawa Y, Takahashi Y, Akagi M, Kamei C (2010) Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on scratching behavior in mice. Int Immunopharmacol 10:304–307

    Article  CAS  PubMed  Google Scholar 

  8. Yosipovitch G (2004) Dry skin and impairment of barrier function associated with itch—new insights. Int J Cosmet Sci 26:1–7

    Article  CAS  PubMed  Google Scholar 

  9. Teresiak-Mikolajczak E, Czarnecka-Operacz M, Jenerowicz D, Silny W (2013) Neurogenic markers of the inflammatory process in atopic dermatitis: relation to the severity and pruritus. Postepy Dermatologii i Alergologii 30:286–292

    PubMed Central  PubMed  Google Scholar 

  10. McMahon SB, Cafferty WB, Marchand F (2005) Immune and glial cell factors as pain mediators and modulators. Exp Neurol 192:444–462

    Article  CAS  PubMed  Google Scholar 

  11. Bannwarth B, Kostine M (2014) Targeting nerve growth factor (NGF) for pain management: what does the future hold for NGF antagonists? Drugs 74:619–626

    Article  CAS  PubMed  Google Scholar 

  12. Kim JS, Kang JY, Ha JH, Lee HY, Kim SJ, Kim SC, Ahn JH, Kwon SS, Kim YK, Lee SY (2013) Expression of nerve growth factor and matrix metallopeptidase-9/tissue inhibitor of metalloproteinase-1 in asthmatic patients. J Asthma: Off J Assoc Care Asthma 50:712–717

    Article  CAS  Google Scholar 

  13. Chen YL, Huang HY, Lee CC, Chiang BL (2014) Small interfering RNA targeting nerve growth factor alleviates allergic airway hyperresponsiveness. Mol Ther Nucleic Acids 3:e158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kao TH, Peng YJ, Tsou HK, Salter DM, Lee HS (2014) Nerve growth factor promotes expression of novel genes in intervertebral disc cells that regulate tissue degradation. J Neurosurg Spine 21:653–656

    Article  PubMed  Google Scholar 

  15. Vinores SA, Perez-Polo JR (1983) Nerve growth factor and neural oncology. J Neurosci Res 9:81–100

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Chen J, Guo X (2014) The role of nerve growth factor and its receptors in tumorigenesis and cancer pain. Biosci Trends 8:68–74

    Article  CAS  PubMed  Google Scholar 

  17. Hondermarck H (2012) Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev 23:357–365

    Article  CAS  PubMed  Google Scholar 

  18. Dincel N, Unalp A, Kutlu A, Ozturk A, Uran N, Ulusoy S (2013) Serum nerve growth factor levels in autistic children in Turkish population: a preliminary study. Indian J Med Res 138:900–903

    PubMed Central  PubMed  Google Scholar 

  19. Barbosa IG, Huguet RB, Neves FS, Reis HJ, Bauer ME, Janka Z, Palotas A, Teixeira AL (2011) Impaired nerve growth factor homeostasis in patients with bipolar disorder. World J Biol Psychiatry 12:228–232

    Article  PubMed  Google Scholar 

  20. Guney E, Ceylan MF, Kara M, Tekin N, Goker Z, Senses Dinc G, Ozturk O, Eker S, Kizilgun M (2014) Serum nerve growth factor (NGF) levels in children with attention deficit/hyperactivity disorder (ADHD). Neurosci Lett 560:107–111

    Article  CAS  PubMed  Google Scholar 

  21. Backman C, Rose GM, Hoffer BJ, Henry MA, Bartus RT, Friden P, Granholm AC (1996) Systemic administration of a nerve growth factor conjugate reverses age-related cognitive dysfunction and prevents cholinergic neuron atrophy. J Neurosci 16:5437–5442

    CAS  PubMed  Google Scholar 

  22. Poduslo JF, Curran GL (1996) Permeability at the blood–brain and blood–nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res 36:280–286

    Article  CAS  PubMed  Google Scholar 

  23. Cui X, Chen L, Ren Y, Ji Y, Liu W, Liu J, Yan Q, Cheng L, Sun YE (2013) Genetic modification of mesenchymal stem cells in spinal cord injury repair strategies. Biosci Trends 7:202–208

    CAS  PubMed  Google Scholar 

  24. Kuihua Z, Chunyang W, Cunyi F, Xiumei M (2014) Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration. J Biomed Mater Res, Part A 102:2680–2691

    Article  Google Scholar 

  25. Kuo YC, Wang CT (2014) Protection of SK-N-MC cells against beta-amyloid peptide-induced degeneration using neuron growth factor-loaded liposomes with surface lactoferrin. Biomaterials 35:5954–5964

    Article  CAS  PubMed  Google Scholar 

  26. Yu H, Liu J, Ma J, Xiang L (2014) Local delivery of controlled released nerve growth factor promotes sciatic nerve regeneration after crush injury. Neurosci Lett 566:177–181

    Article  CAS  PubMed  Google Scholar 

  27. Povarnina PY, Vorontsova ON, Gudasheva TA, Ostrovskaya RU, Seredenin SB (2013) Original nerve growth factor mimetic dipeptide GK-2 restores impaired cognitive functions in rat models of Alzheimer’s disease. Acta Naturae 5:84–91

    PubMed Central  PubMed  Google Scholar 

  28. Antipova TA, Gudasheva TA, Seredenin SB (2011) In vitro study of neuroprotective properties of GK-2, a new original nerve growth factor mimetic. Bull Exp Biol Med 150:607–609

    Article  CAS  PubMed  Google Scholar 

  29. Povarina P, Gudasheva TA, Vorontsova ON, Nikolaev SV, Antipova TA, Ostrovskaia RU, Seredin SB (2012) Neuroprotective effects of a dipeptide mimetic on the GK-2 nerve growth factor in model of permanent common carotid artery occlusion in rats. Eksperimental’naia i Klinicheskaia Farmakologiia 75:15–20

    PubMed  Google Scholar 

  30. Zhao GY, Ding XD, Guo Y, Chen WM (2014) Intrathecal lidocaine neurotoxicity: combination with bupivacaine and ropivacaine and effect of nerve growth factor. Life Sci 112:10–21

    Article  PubMed  Google Scholar 

  31. Zhang H, Wu F, Kong X, Yang J, Chen H, Deng L, Cheng Y, Ye L, Zhu S, Zhang X, Wang Z, Shi H, Fu X, Li X, Xu H, Lin L, Xiao J (2014) Nerve growth factor improves functional recovery by inhibiting endoplasmic reticulum stress-induced neuronal apoptosis in rats with spinal cord injury. J Transl Med 12:130

    Article  PubMed Central  PubMed  Google Scholar 

  32. Evans SM, Casartelli A, Herreros E, Minnick DT, Day C, George E, Westmoreland C (2001) Development of a high throughput in vitro toxicity screen predictive of high acute in vivo toxic potential. Toxicol In Vitro 15:579–584

    Article  CAS  PubMed  Google Scholar 

  33. Dileonardi AM, Huh JW, Raghupathi R (2012) Differential effects of FK506 on structural and functional axonal deficits after diffuse brain injury in the immature rat. J Neuropathol Exp Neurol 71:959–972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Cheng L, Liu Y, Zhao H, Zhang W, Guo YJ, Nie L (2013) Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats. Biochem Biophys Res Commun 440:330–335

    Article  CAS  PubMed  Google Scholar 

  35. Figley SA, Liu Y, Karadimas SK, Satkunendrarajah K, Fettes P, Spratt SK, Lee G, Ando D, Surosky R, Giedlin M, Fehlings MG (2014) Delayed administration of a bio-engineered zinc-finger VEGF-A gene therapy is neuroprotective and attenuates allodynia following traumatic spinal cord injury. PLoS One 9:e96137

    Article  PubMed Central  PubMed  Google Scholar 

  36. Chen G, Zhang Z, Wang S, Lv D (2013) Combined treatment with FK506 and nerve growth factor for spinal cord injury in rats. Exp Ther Med 6:868–872

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Nuttall RP, Zinsmeister PP (1983) Differential response to contact during embryonic nerve–nonnerve cell interactions. Cell Motil 3:307–320

    Article  CAS  PubMed  Google Scholar 

  38. Aletta JM, Greene LA (1988) Growth cone configuration and advance: a time-lapse study using video-enhanced differential interference contrast microscopy. J Neurosci 8:1425–1435

    CAS  PubMed  Google Scholar 

  39. Robbins N, Polak J (1988) Filopodia, lamellipodia and retractions at mouse neuromuscular junctions. J Neurocytol 17:545–561

    Article  CAS  PubMed  Google Scholar 

  40. Mitchell DJ, Blasier KR, Jeffery ED, Ross MW, Pullikuth AK, Suo D, Park J, Smiley WR, Lo KW, Shabanowitz J, Deppmann CD, Trinidad JC, Hunt DF, Catling AD, Pfister KK (2012) Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J Neurosci 32:15495–15510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Song EJ, Yoo YS (2011) Nerve growth factor-induced neurite outgrowth is potentiated by stabilization of TrkA receptors. BMB Rep 44:182–186

    Article  CAS  PubMed  Google Scholar 

  42. Abu El-Asrar AM, Mohammad G, De Hertogh G, Nawaz MI, Van Den Eynde K, Siddiquei MM, Struyf S, Opdenakker G, Geboes K (2013) Neurotrophins and neurotrophin receptors in proliferative diabetic retinopathy. PLoS One 8:e65472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Arimura N, Kimura T, Nakamuta S, Taya S, Funahashi Y, Hattori A, Shimada A, Menager C, Kawabata S, Fujii K, Iwamatsu A, Segal RA, Fukuda M, Kaibuchi K (2009) Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev Cell 16:675–686

    Article  CAS  PubMed  Google Scholar 

  44. Pradines A, Magazin M, Schiltz P, Le Fur G, Caput D, Ferrara P (1995) Evidence for nerve growth factor-potentiating activities of the nonpeptidic compound SR 57746A in PC12 cells. J Neurochem 64:1954–1964

    Article  CAS  PubMed  Google Scholar 

  45. Nielander HB, French P, Oestreicher AB, Gispen WH, Schotman P (1993) Spontaneous morphological changes by overexpression of the growth-associated protein B-50/GAP-43 in a PC12 cell line. Neurosci Lett 162:46–50

    Article  CAS  PubMed  Google Scholar 

  46. Thauerer B, Voegele P, Hermann-Kleiter N, Thuille N, de Araujo ME, Offterdinger M, Baier G, Huber LA, Baier-Bitterlich G (2014) LAMTOR2-mediated modulation of NGF/MAPK activation kinetics during differentiation of PC12 cells. PLoS One 9:e95863

    Article  PubMed Central  PubMed  Google Scholar 

  47. Chen JH, Lee DC, Chiu IM (2014) Cytotoxic effects of acrylamide in nerve growth factor or fibroblast growth factor 1-induced neurite outgrowth in PC12 cells. Arch Toxicol 88:769–780

    CAS  PubMed  Google Scholar 

  48. Terada K, Kojima Y, Watanabe T, Izumo N, Chiba K, Karube Y (2014) Inhibition of nerve growth factor-induced neurite outgrowth from PC12 cells by dexamethasone: signaling pathways through the glucocorticoid receptor and phosphorylated Akt and ERK1/2. PLoS One 9:e93223

    Article  PubMed Central  PubMed  Google Scholar 

  49. Nishina A, Kimura H, Tsukagoshi H, Kozawa K, Koketsu M, Ninomiya M, Sato D, Obara Y, Furukawa S (2013) Neurite outgrowth of PC12 cells by 4′-O-beta-D-glucopyranosyl-3′,4-dimethoxychalcone from Brassica rapa L.hidabeni’ was enhanced by pretreatment with p38MAPK inhibitor. Neurochem Res 38:2397–2407

    Article  CAS  PubMed  Google Scholar 

  50. Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, Naito K, Toshioka T, Hidaka H (1990) Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem 265:5267–5272

    CAS  PubMed  Google Scholar 

  51. Emery AC, Eiden MV, Eiden LE (2014) Separate cyclic AMP sensors for neuritogenesis, growth arrest, and survival of neuroendocrine cells. J Biol Chem 289:10126–10139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wang L, Liang Z, Li G (2011) Rab22 controls NGF signaling and neurite outgrowth in PC12 cells. Mol Biol Cell 22:3853–3860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Suo D, Park J, Harrington AW, Zweifel LS, Mihalas S, Deppmann CD (2014) Coronin-1 is a neurotrophin endosomal effector that is required for developmental competition for survival. Nat Neurosci 17:36–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Fujita A, Koinuma S, Yasuda S, Nagai H, Kamiguchi H, Wada N, Nakamura T (2013) GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70. PLoS One 8:e79689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Pommereit D, Wouters FS (2007) An NGF-induced Exo70-TC10 complex locally antagonises Cdc42-mediated activation of N-WASP to modulate neurite outgrowth. J Cell Sci 120:2694–2705

    Article  CAS  PubMed  Google Scholar 

  56. Kabayama H, Tokushige N, Takeuchi M, Mikoshiba K (2008) Syntaxin 6 regulates nerve growth factor-dependent neurite outgrowth. Neurosci Lett 436:340–344

    Article  CAS  PubMed  Google Scholar 

  57. Spillane M, Ketschek A, Donnelly CJ, Pacheco A, Twiss JL, Gallo G (2012) Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex. J Neurosci 32:17671–17689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mingorance-Le Meur A, Mohebiany AN, O’Connor TP (2009) Varicones and growth cones: two neurite terminals in PC12 cells. PLoS One 4:e4334

    Article  PubMed Central  PubMed  Google Scholar 

  59. Phan-Thi H, Wache Y (2014) Isomerization and increase in the antioxidant properties of lycopene from Momordica cochinchinensis (gac) by moderate heat treatment with UV-Vis spectra as a marker. Food Chem 156:58–63

    Article  CAS  PubMed  Google Scholar 

  60. Aoki H, Kieu NT, Kuze N, Tomisaka K, Van Chuyen N (2002) Carotenoid pigments in GAC fruit (Momordica cochinchinensis SPRENG). Biosci Biotechnol Biochem 66:2479–2482

    Article  CAS  PubMed  Google Scholar 

  61. Jung K, Chin YW, Yoon K, Chae HS, Kim CY, Yoo H, Kim J (2013) Anti-inflammatory properties of a triterpenoidal glycoside from Momordica cochinchinensis in LPS-stimulated macrophages. Immunopharmacol Immunotoxicol 35:8–14

    Article  CAS  PubMed  Google Scholar 

  62. Ng TB, Chan WY, Yeung HW (1992) Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen Pharmacol 23:579–590

    Article  CAS  PubMed  Google Scholar 

  63. Wong KL, Wong RN, Zhang L, Liu WK, Ng TB, Shaw PC, Kwok PC, Lai YM, Zhang ZJ, Zhang Y, Tong Y, Cheung HP, Lu J, Sze SC (2014) Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential. Chin Med 9:19

    Article  PubMed Central  PubMed  Google Scholar 

  64. D’Souza C, Henriques ST, Wang CK, Craik DJ (2014) Structural parameters modulating the cellular uptake of disulfide-rich cyclic cell-penetrating peptides: MCoTI-II and SFTI-1. Eur J Med Chem 88:10-18

    Article  PubMed  Google Scholar 

  65. Cascales L, Henriques ST, Kerr MC, Huang YH, Sweet MJ, Daly NL, Craik DJ (2011) Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides. J Biol Chem 286:36932–36943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Chan LY, He W, Tan N, Zeng G, Craik DJ, Daly NL (2013) A new family of cystine knot peptides from the seeds of Momordica cochinchinensis. Peptides 39:29–35

    Article  CAS  PubMed  Google Scholar 

  67. Craik DJ, Simonsen S, Daly NL (2002) The cyclotides: novel macrocyclic peptides as scaffolds in drug design. Curr Opin Drug Discov Dev 5:251–260

    CAS  Google Scholar 

  68. Park S, Stromstedt AA, Goransson U (2014) Cyclotide structure-activity relationships: qualitative and quantitative approaches linking cytotoxic and anthelmintic activity to the clustering of physicochemical forces. PLoS One 9:e91430

    Article  PubMed Central  PubMed  Google Scholar 

  69. Heitz A, Hernandez JF, Gagnon J, Hong TT, Pham TT, Nguyen TM, Le-Nguyen D, Chiche L (2001) Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Biochemistry 40:7973–7983

    Article  CAS  PubMed  Google Scholar 

  70. Kliemannel M, Weininger U, Balbach J, Schwarz E, Rudolph R (2006) Examination of the slow unfolding of pro-nerve growth factor argues against a loop threading mechanism for nerve growth factor. Biochemistry 45:3517–3524

    Article  CAS  PubMed  Google Scholar 

  71. Oyuntsetseg N, Khasnatinov MA, Molor-Erdene P, Oyunbileg J, Liapunov AV, Danchinova GA, Oldokh S, Baigalmaa J, Chimedragchaa C (2014) Evaluation of direct antiviral activity of the Deva-5 herb formulation and extracts of five Asian plants against influenza A virus H3N8. BMC Complement Altern Med 14:235

    Article  PubMed Central  PubMed  Google Scholar 

  72. Thongyoo P, Roque-Rosell N, Leatherbarrow RJ, Tate EW (2008) Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides. Org Biomol Chem 6:1462–1470

    Article  CAS  PubMed  Google Scholar 

  73. Zheng L, Zhang YM, Zhan YZ, Liu CX (2014) Momordica cochinchinensis seed extracts suppress migration and invasion of human breast cancer ZR-75-30 cells via down-regulating MMP-2 and MMP-9. Asian Pac J Cancer Prev 15:1105–1110

    Article  PubMed  Google Scholar 

  74. Rajput ZI, Xiao CW, Hu SH, Habib M, Soomro NA (2010) Enhancement of immune responses to infectious bursal disease vaccine by supplement of an extract made from Momordica cochinchinensis (Lour.) Spreng. seeds. Poult Sci 89:1129–1135

    Article  CAS  PubMed  Google Scholar 

  75. Tsoi AY, Ng TB, Fong WP (2006) Immunomodulatory activity of a chymotrypsin inhibitor from Momordica cochinchinensis seeds. J Pept Sci 12:605–611

    Article  CAS  PubMed  Google Scholar 

  76. Jung K, Chin YW, Chung YH, Park YH, Yoo H, Min DS, Lee B, Kim J (2013) Anti-gastritis and wound healing effects of Momordicae Semen extract and its active component. Immunopharmacol Immunotoxicol 35:126–132

    Article  PubMed  Google Scholar 

  77. Kang JM, Kim N, Kim B, Kim JH, Lee BY, Park JH, Lee MK, Lee HS, Kim JS, Jung HC, Song IS (2010) Enhancement of gastric ulcer healing and angiogenesis by cochinchina Momordica seed extract in rats. J Korean Med Sci 25:875–881

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Institutes of Health, National Institute of Minority Health and Health Disparities, RCMI Grant (8G12MD007582-28.) and COE Grant (P20 MD006738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karam F. A. Soliman.

Additional information

Special Issue: In Honor of Lynn Wecker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzio, E., Georges, B., McTier, O. et al. Neurotrophic Effects of Mu Bie Zi (Momordica cochinchinensis) Seed Elucidated by High-Throughput Screening of Natural Products for NGF Mimetic Effects in PC-12 Cells. Neurochem Res 40, 2102–2112 (2015). https://doi.org/10.1007/s11064-015-1560-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1560-y

Keywords

Navigation